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Turnover and replication analysis by isotope
labeling (TRAIL) reveals the influence of tissue
context on protein and organelle lifetimes
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Abstract

The lifespans of proteins range from minutes to years within mam-
malian tissues. Protein lifespan is relevant to organismal aging, as
long-lived proteins accrue damage over time. It is unclear how pro-
tein lifetime is shaped by tissue context, where both cell turnover
and proteolytic degradation contribute to protein turnover. We
develop turnover and replication analysis by 15N isotope labeling
(TRAIL) to quantify protein and cell lifetimes with high precision
and demonstrate that cell turnover, sequence-encoded features,
and environmental factors modulate protein lifespan across tis-
sues. Cell and protein turnover flux are comparable in proliferative
tissues, while protein turnover outpaces cell turnover in slowly
proliferative tissues. Physicochemical features such as hydropho-
bicity, charge, and disorder influence protein turnover in slowly
proliferative tissues, but protein turnover is much less sequence-
selective in highly proliferative tissues. Protein lifetimes vary
nonrandomly across tissues after correcting for cell turnover.
Multiprotein complexes such as the ribosome have consistent life-
times across tissues, while mitochondria, peroxisomes, and lipid
droplets have variable lifetimes. TRAIL can be used to explore how
environment, aging, and disease affect tissue homeostasis.
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Introduction

The cellular proteome undergoes constant cycles of synthesis, fold-

ing, and degradation. Proteostasis (protein homeostasis) is achieved

by the balance of these processes. When these systems function

properly, the health of the proteome is ensured by the efficient

degradation of misfolded or damaged proteins and replacement with

properly folded and functional copies. When proteostasis breaks

down due to aging or disease, proteome disruptions including accu-

mulation of oxidative damage, misfolding, and aggregation result

(Taylor & Dillin, 2011; Koyuncu et al, 2021). Measurements of pro-

tein turnover have revealed that protein lifetimes range from

minutes to years within mammalian tissues (Price et al, 2010; Savas

et al, 2012; Toyama et al, 2013; Fornasiero et al, 2018; Mathieson

et al, 2018). The functional consequences of age-linked proteostasis

collapse are most evident for extremely long-lived proteins in post-

mitotic tissues. For instance, crystallin proteins of the eye lens

misfold and aggregate over decades, causing cataracts (Taylor &

Davies, 1987), while the extremely long-lived nuclear pore complex

becomes leaky and dysfunctional in the aging brain (D’Angelo et al,

2009). These striking examples raise several questions, including:

what factors control protein lifetime in healthy tissues? What is the

relationship between protein longevity and cellular longevity? Why

do age-linked declines in long-lived protein function manifest only

in some tissues?

Protein lifetime can be influenced by both sequence-encoded fea-

tures and environmental factors (Marrero & Barrio-Hernandez,

2021). For instance, proteins with long disordered segments are gen-

erally more short-lived than proteins that adopt a stable structure

(van der Lee et al, 2014; Fishbain et al, 2015). Posttranslational

modifications have varied effects on protein stability (Wu et al,

2021; Zecha et al, 2022), while higher buried surface area correlates

with longer lifetime (Mallik & Kundu, 2018). There are many excep-

tions that break these rules, however, and it is unclear to what

extent physicochemical features predict protein lifetime in vivo.

Additionally, the cellular, tissue, and organismal environments of

proteins can strongly influence their degradation rates. For instance,

the same protein sequence can have dramatically different lifetimes

when expressed in different cell types, tissues, or organisms

(Toyama et al, 2013; Dörrbaum et al, 2018; Matsuda et al, 2020;

Swovick et al, 2020; Rolfs et al, 2021).

One important environmental parameter that can strongly influ-

ence the observed turnover rate of a protein is the proliferative
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capacity of the tissue where it is expressed. Protein clearance (on a

per cell basis) is influenced by the additive effects of its degradation

kinetics as well as cellular dilution due to cell division (Price et al,

2010; Toyama et al, 2013; Fig 1A). Thus, in general, protein

clearance rates are expected to be faster within proliferative tissues

in comparison to nonproliferative tissues. However, in typical

dynamic metabolic labeling experiments employed for measure-

ments of in vivo protein turnover, potential differences in tissue pro-

liferation rates are unknown, making it impossible to deconvolute

the effects of protein degradation and dilution. Thus, with currently

available methodology, it is not possible to account for differences

in tissue proliferation when comparing protein turnover rates across

tissues.

To accurately measure in vivo protein turnover rates within mul-

tiple tissues, we sought to develop a mass spectrometry-based

method capable of simultaneously quantifying in vivo protein degra-

dation and cell division rates within a single labeling experiment.

While metabolic labeling with 13C or 15N isotopes has become the

gold standard for the quantification of protein turnover rates

(McClatchy et al, 2007; Price et al, 2010), this methodology has not

been integrated with cell turnover measurements. Instead, cell turn-

over rates are frequently measured by partial labeling with nucleo-

tide analogs (e.g., 3H-thymidine or BrdU), an approach that is often

limited by label toxicity (Reome et al, 2000; Asher et al, 2009).

Alternatively, D2O labeling has been used to quantify cell turnover

(Neese et al, 2002) or to measure bulk rates of protein turnover and

proteins

amino acids

kdeg

kdiv

kdeg kdiv
fractional labeling rate 
(kclearance or kturnover)

= +
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A

Figure 1. Schematic of turnover and replication analysis by isotope labeling (TRAIL) approach.

A The fractional rate by which a protein population is turned over within a cell (kt) can be determined by measuring the fractional rate of isotope incorporation in
continuous labeling experiments. This rate is established by the additive effects of protein degradation (kdeg) and cell division (kdiv). In postmitotic cells, kdiv is
negligible and does not contribute to protein turnover. In proliferating tissues, the rate of cell division is balanced by the rate of cell death (kdeath).

B Diagram of TRAIL approach for simultaneously quantifying kt and kdiv. These two rates are measured by quantifying rates of 15N incorporation into proteins and DNA
within the same measurement. Together, these two measurements can be used to accurately measure kdeg.
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nucleic acid turnover (Drake et al, 2013; Thompson et al, 2016).

However, only low levels of D2O can be tolerated in vivo, and the

small mass shifts that are achieved by partial labeling require spe-

cialized analysis methods for quantitation (Miller et al, 2020). Here,

we describe methods to measure both protein degradation and cell

division within mammalian tissues using a single source of label:

the stable isotope 15N (Fig 1B). We name this suite of methods

“turnover and replication analysis by isotope labeling”, or turnover

and replication analysis by isotope labeling (TRAIL). We apply

TRAIL to proliferative and nonproliferative tissues and generate a

rich dataset that reveals tissue-specific features of proteostasis. We

find evidence for sequence-based selectivity in protein turnover in

tissues that undergo slow cell proliferation, while protein turnover

is much less selective in highly proliferative tissues. Furthermore,

protein and organelle lifetimes vary widely across healthy tissues

even after correcting for cell proliferation rates. These observations

illustrate the variable influence of “nature” (sequence-encoded fea-

tures) versus “nurture” (environmental factors) on proteostasis in

vivo. In the future, TRAIL can be used to explore how environment,

aging, and disease affect tissue homeostasis.

Results

Increasing throughput of stable isotope labeling time courses by
tandem mass tag multiplexing

Proteome-wide quantification of protein stability can be achieved

in vivo by feeding mice a food source containing ~ 100% abundance

of the stable, nontoxic isotope 15N, a method referred to as stable

isotope labeling in mammals (SILAM; McClatchy et al, 2007; Price

et al, 2010). Labeled tissues are then analyzed by tandem mass

spectrometry (LC–MS/MS) to quantify the incorporation of labeled

amino acids into the proteome over time (McClatchy et al, 2007;

Price et al, 2010). Broader application of SILAM has been limited by

the investment of resources and time required to complete these

types of analyses. One major bottleneck is mass spectrometer run

time, which rapidly multiplies when each sample must be analyzed

in a separate LC–MS/MS run. Furthermore, protein “dropout” due

to missing values limits the number of proteins whose turnover

kinetics can be precisely determined. We have previously used tan-

dem mass tagging (TMT) to “hyperplex” pools of isotope-labeled

samples in a single LC–MS/MS run, which decreases cost while

increasing speed and sensitivity (Welle et al, 2016). Here, we adapt

this approach to 15N-labeled samples from mouse tissue (TMT-

SILAM, Appendix Fig S1). Hyperplexed analysis of 15N- labeled sam-

ples presents a unique challenge due to the high complexity of the

labeled peptide spectra. The gradual labeling of the in vivo amino

acid precursor pool by 15N results in broadened MS1 spectra whose

average mass to charge ratios increase as a function of labeling time

(Price et al, 2010), creating a challenging analysis problem that

requires specialized data analysis workflows (Guan et al, 2011,

2012). However, we previously demonstrated that hyperplexed sam-

ple analysis can be simplified by quantifying the relative decay of

unlabeled peaks as a function of time rather than the fractional pop-

ulation of unlabeled and labeled peaks (Welle et al, 2016). Here, by

quantifying the fractional rate of loss of 14N peptides (as newly syn-

thesized 15N-labeled peptides accumulate), we were able to directly

measure the turnover rate of pre-existing unlabeled proteins

(Appendix Fig S1).

We performed a 32-day TMT-SILAM time course on young adult

(9-week-old) mice. Animal weights remained stable through the

labeling period (Appendix Fig S2), indicating that protein levels are

at a steady-state and fractional labeling rates can be equated with

protein turnover rates (Ross et al, 2021; see Materials and Methods).

We focused our analyses on selected tissues that are thought to be

either highly proliferative or largely postmitotic (Sender & Milo,

2021): the large intestine (a proliferative tissue); the liver (a quies-

cent tissue that can proliferate in response to injury); and the heart

and white adipose tissue, which are mostly postmitotic. We ana-

lyzed the labeling kinetics of thousands of proteins per tissue

(Appendix Fig S3) and filtered these data at several levels to compile

high-quality datasets. Experimental replicates were first filtered

based on coverage: only proteins that were detected with a mini-

mum of three peptide spectral matches (PSMs) in all channels were

retained for further analysis. Second, aggregated replicate data were

used to determine the rate constant for protein turnover (kt) by least

squares fitting to a first-order kinetic model (Note that kt values

refer to protein turnover rate constants that have not been corrected

for the dilution effects of cell division as described below). Only kt
values that were measured by fitting data arising from at least two

replicates with a high goodness of fit (t-statistic > 3; Appendix

Fig S4; see Materials and Methods) were considered in downstream

analyses.

Features of protein turnover across tissues

Altogether, we defined high-confidence kt values (Fig 2A) and corre-

sponding predicted half-life (t1/2) values (Fig 2B) for thousands of

proteins per tissue: 2,719 in the large intestine, 2,099 in liver, 1,610

in white adipose tissue, and 1,635 in the heart (Appendix Fig S3;

Dataset EV1). Protein abundance and protein lifetime were generally

not correlated with each other (Appendix Fig S5). The distributions

of kt values were unique for each tissue; proteins were more short-

lived in the intestine (median t1/2 1.7 days) and liver (median t1/2
2.4 days), but more long-lived in the fat (median t1/2 6.1 days) and

heart (median t1/2 5.7 days). Differences in protein stability have

been previously reported between mammalian tissues, such as the

brain, liver, and muscle (Price et al, 2010; Toyama et al, 2013; Rolfs

et al, 2021). We compared our datasets to previous analyses of pro-

teome turnover in the liver (Price et al, 2010) and heart (Lau et al,

2016) and found high concordance in both cases (Appendix Fig S6).

We explored and excluded several potential explanations for

tissue-specific differences in protein stability. (i) These differences

persist among the subset of proteins whose lifetimes were quantified

across all four tissues (902 proteins total; Appendix Fig S7A and B;

Dataset EV2), indicating that differences in protein lifetime are not

due simply to differences in proteome composition. Furthermore, a

large proportion of protein lifetime differences are statistically

significant in pairwise comparisons between tissues, while 282 pro-

teins (31%) have significantly different kt values across all four tis-

sues (Appendix Fig S7C; Dataset EV2). (ii) These differences also

persist if secreted proteins are excluded from analyses (Appendix

Fig S7D–F); secreted proteins are a unique class of proteins whose

turnover is difficult to accurately profile in vivo, as their sites of syn-

thesis, function, and degradation can be quite disparate. Even after
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controlling for these factors, differences in protein lifetimes across

tissues are readily apparent. For example, many intracellular pro-

teins have days-long lifetimes in the liver but weeks-long lifetimes

in the heart (Fig 2C), with 85% of these proteins having significantly

different kt values between these two tissues (Appendix Fig S7C).

We looked more closely at intracellular proteins at the extremes

of stability by identifying gene ontology (GO) terms that were

overrepresented in either the top decile (Fig 2D) or bottom decile

(Fig 2E) of kt values in each tissue. The identity of the most

short-lived and most long-lived proteins varies widely. For instance,

proteins involved in intestinal nutrient absorption are enriched

among the most short-lived proteins of the large intestine, while

proteins involved in alcohol and fatty acid metabolism are found

among the most short-lived proteins of the liver (Fig 2D). At the

other extreme, components of chromatin are enriched in the most

long-lived proteins of the liver and intestine, while proteins involved

in various mitochondrial functions are enriched in the most long-

lived proteins of the heart and adipose tissue (Fig 2E). Interestingly,

while components of chromatin and mitochondria have been found

to be long-lived in other protein turnover studies (Price et al, 2010;

Figure 2. Proteome turnover measurements for four reference tissues.

A, B Turnover rates (kt) (A) and predicted half-lives (t1/2) (B) determined by TMT-SILAM of proteins extracted from intestine (n = 2,719; median t1/2 1.7 days), liver
(n = 2099, median t1/2 2.4 days), fat (n = 1,610, median t1/2 6.1 days), and heart (n = 1,635, median t1/2 5.7 days). Box (Tukey) plot center line indicates median; box
limits indicate 25th to 75th percentiles; whiskers indicate 1.5× interquartile range; points indicate outlier values. ****indicates that all medians are significantly dif-
ferent (P < 0.0001, Kruskal–Wallis test). See also Dataset EV1 for full dataset.

C Predicted half-lives (t1/2) for 1,102 intracellular proteins in the heart versus the liver.
D, E Heatmaps of GO term enrichment in the top 10% (least stable, D) and the bottom 10% (most stable, E) of kt values for intracellular proteins detected in each

tissue.
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Toyama et al, 2013; Bomba-Warczak et al, 2021; Krishna et al,

2021), our data suggest that their relative stability varies from tissue

to tissue.

We next explored how physicochemical properties such as amino

acid composition, hydrophobicity, charge and intrinsic disorder cor-

relate with protein turnover (Fig 3; Dataset EV3). While these rela-

tionships have been explored within protein turnover datasets

acquired in yeast (Martin-Perez & Vill�en, 2017) and in cultured cells

(van der Lee et al, 2014; Fishbain et al, 2015; Marrero et al, 2017),

they have not to our knowledge been evaluated across mammalian

tissues. Overall, we did not find a single protein feature that corre-

lated significantly with protein turnover rate across all tissues.

Rather, we found features that showed significant relationships to

protein turnover in a subset of tissues (Fig 3A). For instance, hydro-

phobicity decreases as turnover rate increases in the heart and fat

proteomes, but not in the liver or intestine proteomes (Fig 3A and

B). In these same tissues, polar amino acids are more abundant in

short-lived proteins than in long-lived proteins (Fig 3A and C). Pro-

tein isoelectric point is strongly anticorrelated with kt, such that

long-lived proteins are more basic (pI > 7) while short-lived proteins

are more acidic (pI < 7) in the heart, liver, and fat (Fig 3A and D).

Consistently, acidic amino acids are overrepresented in short-lived

proteins in these tissues (Fig 3A). Finally, we evaluated relationships

between protein disorder and protein turnover by quantifying the

frequency of intrinsically disordered regions (IDRs) in the most sta-

ble and least stable proteins (Fig 3E). IDRs of at least 40 amino acids

in length are correlated with significantly accelerated protein turn-

over across eukaryotes (van der Lee et al, 2014; Fishbain et al,

2015). While IDRs are overrepresented in unstable heart and fat pro-

teins, there is no relationship between disorder and protein lifetime

in the intestine or liver (Fig 3E). In an orthogonal approach, we eval-

uated the turnover rates of an experimentally validated list of disor-

dered proteins from the DisProt database (Quaglia et al, 2021) and

found that this validated group of disordered proteins turned over

significantly faster than the proteome median within the heart, but

not in any other tissue (Fig 3F; Appendix Fig S7G and H). Instead,

many of these disordered proteins are rapidly degraded in one tissue

but relatively stable in another. Taken together, our analyses reveal

greater sequence-based selectivity of turnover of the heart and fat

proteome than of the liver and intestine proteome.

We speculate that the interplay between sequence features and

environmental factors influences protein lifetime in vivo. Within a

living tissue, the rates of protein turnover are influenced both by

proteolytic degradation of proteins and by dilution of proteins dur-

ing cell turnover (Fig 1A). Variations in the extent of cell turnover

could, at least in part, underlie the observed differences in protein

turnover rates across tissues (Fig 2). Differences in cell turnover

may also influence the observed differences in distributions of pro-

tein turnover rates within a given tissue (Fig 3) as cell turnover

nonselectively accelerates apparent protein turnover rates among all

proteins within a given tissue. To accurately define the relationship

between protein lifetime and cellular lifetime, a method that can

quantify both of these parameters in parallel is needed.

TRAIL to profile cell and protein turnover

We sought to develop a method to quantify cell turnover rates in

parallel with protein turnover measurements. It is well appreciated

that 15N-labeled nutrients supplied via SILAM chow can efficiently

label proteins in mice. However, diet-supplied 15N can also be

robustly incorporated into genomic DNA via nitrogen-containing

nucleobases (Drigo et al, 2019; Appendix Fig S8). We, therefore,

reasoned that tracking the rate of 15N incorporation into the genome

via DNA replication would yield cell division rates (kdiv), which

when conducted in conjunction with analyses of protein labeling

could be used to determine corrected protein degradation rates

(kdeg; Ross et al, 2021; Fig 1B, Appendix Fig S9). We refer to this

method as TRAIL.

To develop this approach, we first needed to address the techni-

cal barrier imposed by the prevalence of in vivo nucleotide recycling.

The fractional labeling of genomic DNA during an isotope labeling

experiment is influenced both by the rate of replication and by the

relative isotope abundance (RIA) of the precursor nucleotide pool

(Appendix Fig S9). The latter is strongly influenced by precursor

uptake from the diet, nucleotide biosynthesis, and nucleotide recy-

cling in vivo (Neese et al, 2002). Incomplete labeling of the precursor

pool due to low precursor uptake, slow de novo biosynthesis, or

extensive recycling of pre-existing nucleic acids would decrease the

extent of 15N incorporation into replicating genomic DNA32. Further-

more, the relative contributions of each of these factors may vary

across tissues. Thus, it is important to define the RIA of the precur-

sor nucleotide pool in each tissue in order to accurately determine

the rate of replication by measuring the fractional labeling

of genomic DNA. We reasoned that we could deconvolute the RIA of

the precursor nucleotide pool by analyzing the combinatorics of

labeling in contiguous stretches of dinucleotides obtained from the

same strand of genomic DNA (Appendix Figs S9 and S10; see Mate-

rials and Methods). A strand of DNA that has been synthesized in

the presence of label will contain labeled nucleotides at a frequency

that is contingent on the RIA of the precursor pool. Analysis of the

isotopologue distribution within dinucleotides enables the calcula-

tion of the prevalence of recycled unlabeled nucleotides within the

precursor pool. Thus, we can determine what fraction of the

observed fully unlabeled dinucleotide population was derived from

pre-existing unlabeled DNA strands, and what fraction was derived

from newly synthesized strands that incorporated unlabeled recycled

nucleotides. Through this deconvolution, we can measure the rela-

tive ratio of old and newly synthesized DNA and determine the rate

of cell proliferation. We digested genomic DNA from SILAM-labeled

mouse tissue to short oligonucleotides using the enzyme benzonase

(Liao et al, 2007), then quantified 15N/14N isotope abundance ratios

in dinucleotides by mass spectrometry. We found that the 15N RIA of

the precursor pool was very high in all tissues, and that diet-derived
15N-labeled nucleic acids were preferentially incorporated into newly

synthesized genomic DNA (Appendix Fig S10C). This is in line with

the fact that nucleotide salvage pathways are repressed in S phase

while de novo nucleotide synthesis is upregulated, so that cells pri-

marily rely on the latter source of nucleotides for DNA replication

(Reichard, 1988). This outcome is also consistent with observations

from other modes of DNA labeling (Macallan et al, 1998).

Our finding that diet-derived and de novo synthesized nucleic

acids are preferred for DNA replication implies that we can make an

accurate measurement of DNA replication rates by tracking 15N

incorporation into either mononucleosides or dinucleotides isolated

from genomic DNA. We tested this by isolating free dA, dC, dT, and

dG mononucleosides from genomic DNA by digestion with a
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cocktail of benzonase, phosphodiesterase, and alkaline phosphatase

(Quinlivan & Gregory, 2008) and quantifying 15N/14N isotope ratios

by mass spectrometry (see Materials and Methods). Decay curves

for all four mononucleosides were in close alignment both with each

other (Appendix Fig S11A) and with dinucleotide curves (Appendix

Fig S10D), indicating that TRAIL is highly precise and reproducible.

Figure 3. Analysis of correlations between protein sequence features and protein turnover rate across tissues.

A Heatmap of Spearman correlation coefficient between kt and protein sequence features (see Materials and Methods).
B GRAVY hydropathy index of proteins in the 1st, 5th, and 10th kt deciles in each tissue; hydropathy is significantly anticorrelated with kt in heart and fat proteomes, but

not in intestine or liver proteomes.
C Isoelectric point of proteins in the 1st, 5th, and 10th kt deciles in each tissue; pI is significantly anticorrelated with kt in the liver, heart, and fat proteomes, but not in

the intestine proteome.
D Abundance of polar amino acids (mole% of D, E, H, K, N, Q, R, S, T) in the 1st, 5th, and 10th kt deciles in each tissue; polar/charged residue abundance is significantly

positively correlated with kt in the heart and fat proteomes, but not in the intestine or liver proteomes.
E Incidence of proteins containing long (> 40 AA) intrinsically disordered regions (IDRs) in the 1st and 10th kt deciles in each tissue. IDR-containing proteins are signifi-

cantly overrepresented in the most short-lived proteins in the heart and fat proteomes, but not in the intestine or liver proteomes. ****indicates P < 0.0001; signifi-
cance determined by χ2 test for between 161 and 272 proteins per decile (see Source Data for Fig 3).

F Turnover rates (kt decile) of 16 experimentally IDPs are significantly faster than the proteome median in the heart, but not in other tissues. IDP annotations from the
DisProt database. See also Source Data for Fig 3 and Dataset EV3 for full table of protein sequence features. Box (Tukey) plot center line indicates median; box limits
indicate 25th to 75th percentiles; whiskers indicate 1.5× interquartile range; points indicate outlier values. ****indicates P < 0.0001 by one-sample t-test.

Source data are available online for this figure.
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To test how accurately TRAIL reports cell division rates, we

devised a benchmarking experiment as follows. We isolated fibro-

blasts from the ear of a mouse that had undergone 15N labeling for a

total of 256 days. Because mouse fibroblasts renew within weeks,

the genomic DNA from these cells was highly labeled with 15N. We

then subcultured these fibroblasts ex vivo and collected genomic

DNA at three timepoints over the course of several days. In parallel,

we quantified cell numbers. We then compared the doubling times

determined by TRAIL versus direct measurement of population dou-

blings. These data were highly consistent (Appendix Fig S12), indi-

cating that TRAIL accurately tracks cell division rate.

With these important controls established, we then applied TRAIL

to the large intestine. We determined a doubling time of ~ 3 days for

this proliferative tissue, in close agreement with previous analyses by

orthogonal methods (Darwich et al, 2014; Sender & Milo, 2021; Fig

4A and B). We then applied TRAIL to the liver, fat, and heart. Each of

these tissues have long average doubling times indicating low prolif-

erative capacity (Fig 4A and B; Dataset EV4). These data are qualita-

tively consistent with previous reports of low proliferation in these

tissues (MacDonald, 1961; Rigamonti et al, 2011; Malliaras et al,

2013). Importantly, bulk tissue measurements report a weighted

average of the turnover rates of a tissue’s major constituent cell types,

such that both the relative abundance and the relative turnover rate

of each cell type contribute to the overall turnover observed. We

referred to single cell sequencing (scSeq)-based tissue atlases to esti-

mate the major cell types in each tissue analyzed, which are as fol-

lows (Appendix Fig S13). Intestine: epithelia, followed by enterocytes

and goblet cells (Neff et al, 2018); liver: hepatocytes, followed by

hepatobiliary cells and lymphocytes (Richter et al, 2021); fat: adipo-

cyte precursors, mature adipocytes, and macrophages (Emont et al,

2022); and heart: cardiomyocytes, cardiac fibroblasts, and endothe-

lial cells (Hu et al, 2018). Many of these cell types express unique sets

of proteins. To understand whether cell type-specific proteins are pre-

sent in our datasets, we referred to cell type-resolved proteome data-

sets, where available (Azimifar et al, 2014), or to cell type markers

determined by scSeq (Hu et al, 2018). Hepatocytes are the majority

cell type in the liver; we detected only 11 hepatocyte-specific proteins

(Azimifar et al, 2014) in our dataset of 2,099 proteins, and detected

no proteins unique to rarer cell types such as Kupffer cells (Appendix

Fig S13; Datasets EV1 and EV5). In the heart, cardiomyocytes and car-

diac fibroblasts are the two most abundant cell types; relying on

unique markers of these cell types identified by scSeq (Hu et al,

2018), we could detect only 35 cardiomyocyte-specific proteins and

eight cardiac fibroblast-specific proteins in our dataset of 1,635 pro-

teins (Appendix Fig S13; Datasets EV1 and EV5). We were not able to

identify a high-confidence list of proteins or transcripts specific to

abundant intestinal or adipose tissue cell types. Altogether, these ana-

lyses indicate that while a small number of cell type-specific proteins

may be detectable from the most abundant cell types in a tissue, the

vast majority of the proteins detected tend to be abundant and

broadly expressed across cell types. It is thus reasonable to evaluate

how tissue-averaged cell turnover relates to tissue-averaged protein

turnover of these broadly expressed proteins.

Protein degradation rates vary across tissues after cell cycle correction

A powerful feature of TRAIL is the ability to cocapture cell and pro-

tein turnover from the same tissues. Comparing these two metrics

revealed that cell turnover and protein turnover flux are comparable

to each other in the intestine (cell doubling time of 3 days vs.

median protein lifetime of 1.7 days; Fig 4A and B). In striking con-

trast, cell turnover occurs orders of magnitude more slowly than

protein turnover in the liver (cell doubling time 51 days; median

protein lifetime 2.4 days), fat (cell doubling time 78 days; median

protein lifetime 6.1 days), and heart (cell doubling time 118 days;

median protein lifetime 5.7 days; Fig 4A and B). These observations

indicate that dilution by cell division contributes significantly to pro-

tein turnover in highly proliferative tissues but not in slowly prolif-

erative tissues. In the intestine, cellular kdiv was roughly equivalent

to or faster than protein kt for approximately 15% of the proteome

(Fig 4C; Appendix Fig S11B); these long-lived proteins are compo-

nents of cell surface and extracellular structures including the extra-

cellular matrix and cell–cell junctions (Fig 4D). In the slowly

proliferative liver, fat, and heart, in contrast, most long-lived pro-

teins turn over at a slow rate that exceeds the rate of cell division

(Fig 4A–C). We were able to evaluate the turnover of two types of

known long-lived proteins: replication-dependent histones and

nuclear pore complex (NPC) components. The turnover of Histone

H3.1 has been used as a proxy for cell division in protein turnover

studies (Toyama et al, 2013; Dörrbaum et al, 2018) because Histone

H3.1 is incorporated into nucleosomes as a heterodimer with His-

tone H4 solely after DNA replication (Wu et al, 1982), leading to the

expectation that this protein’s levels would decrease by dilution

over successive cell divisions. If this assumption is correct, the life-

time of Histone H3.1 should be very similar to the DNA replication

rate reported by TRAIL. This is the case in the intestine and fat, but

the lifetime of Histone H3.1 is significantly shorter than the average

cell doubling time in the slowly proliferative liver and heart (Fig

4E). We speculate that this difference reflects DNA replication-

independent processes that regulate the lifetime of H3.1. For

instance, H3.1/H4 dimers can be evicted from DNA during tran-

scription and are replaced with heterodimers of Histone H3.3 and

Histone H4 (Ahmad & Henikoff, 2002). Separately, histones can also

be found in cytosolic pools in complex with chaperones, where they

may be more rapidly turned over (Cook et al, 2011). We speculate

that each of these factors contributes to the turnover of this histone

isoform in postmitotic tissues over long timescales. The NPC gates

transport between the nucleus and cytoplasm; based on its crucial

role in nuclear function and on the long lifetime of the core struc-

tural scaffold of the NPC in the brain (Toyama et al, 2013, 2019), it

has been proposed that the NPC does not turn over for the lifetime

of the cell. However, NPC components are not as long-lived in the

liver (Toyama et al, 2013) or in some cultured cell types (Mathieson

et al, 2018). Differences in cell division rates were proposed to

underlie the variability in lifetime of NPC components, a hypothesis

that we can directly test with TRAIL. Our data indicate that compo-

nents of the Nup93 subcomplex (Nup93, Nup155, and Nup205) turn

over at rates similar to cell turnover in the intestine, fat, and heart,

but turn over significantly more rapidly than the rate of cell turn-

over in the liver (Fig 4E). TRAIL thus reveals contextual variability

in the rate of turnover of long-lived proteins across tissues.

To determine to what extent cell turnover contributes to apparent

protein turnover rate, kdiv values can be subtracted from protein kt
values to extrapolate corrected protein degradation rates (kdeg; Ross

et al, 2021; Fig 1A). We examined kdeg values in the liver, heart,

and fat, where protein kt rates far outpace cell kdiv rates. If variable

� 2023 The Authors Molecular Systems Biology e11393 | 2023 7 of 19

John Hasper et al Molecular Systems Biology

 17444292, 0, D
ow

nloaded from
 https://w

w
w

.em
bopress.org/doi/10.15252/m

sb.202211393 by U
niversity O

f C
alifornia, San, W

iley O
nline L

ibrary on [23/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



cell turnover rates underlie the variability in protein kt values across

tissues, kdeg values should be largely invariant after correcting for

kdiv. We did not observe this outcome. Instead, the range of kdeg

values remained distinct from tissue to tissue even after correcting

for cell turnover rates, and persisted when we restricted our analysis

only to broadly expressed proteins that were detected in all tissues

Figure 4. Analysis of relationships between cell turnover rate and protein turnover rate across tissues.

A, B (A) Comparison of cell division rates (kdiv) to protein turnover rates (kt) and (B) of cell doubling time to protein lifetime (t1/2) in intestine, liver, fat, and heart,
determined by TRAIL. Cell turnover rates were determined from 6-timepoint time courses with three tissue samples per timepoint. Proteome kt and t1/2 values
reproduced from Fig 3A and B. Bottom 10% of proteome corresponds to 271 proteins (intestine); 209 proteins (liver); 161 proteins (fat); and 163 proteins (heart). Box
(Tukey) plot center line indicates median; box limits indicate 25th to 75th percentiles; whiskers indicate 1.5× interquartile range; points indicate outlier values. See
also Dataset EV4.

C Only the proliferative intestine has a significant number of proteins whose kt is equal to or less than kdiv, suggesting that these proteins are diluted by cell division.
D A subset of Gene Ontology (GO) terms (cellular component) overrepresented in proteins that are diluted out by cell division in the intestine are shown in a bubble

plot. Redundant GO terms were removed and nonredundant GO terms were organized based on semantic similarity by REViGO. Bubble size corresponds to number
of proteins associated with GO term, ranging in size from 20 to 120.

E Comparison of cell doubling time determined by TRAIL to the lifetime of the replication-dependent histone H3.1 and to nucleoporins Nup93, Nup155, and Nup205.
Error bars indicate SEM. ****indicates P < 0.0001 and **indicates P < 0.01, t-test.

F, G Cell cycle-corrected degradation rates (kdeg) (F) and half-lives (t1/2corr) (G) for 967 proteins detected in liver (median t1/2corr 2.9 days), fat (median t1/2corr 6.8 days),
and heart (median t1/2corr 5.9 days). Box (Tukey) plot center line indicates median; box limits indicate 25th to 75th percentiles; whiskers indicate 1.5× interquartile
range; points indicate outlier values. ****indicates that all medians are significantly different (P < 0.0001, Kruskal–Wallis test).

H Predicted cell cycle-corrected half-lives (t1/2corr) for 1,102 intracellular proteins in the heart versus the liver. See also Dataset EV5 for full dataset.
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(967 proteins; Fig 4E and F; Datasets EV5 and EV6). Overall, the

liver proteome (median t1/2corr 2.9 days) turns over significantly

more rapidly than the fat proteome (median t1/2corr 6.8 days; 90%

of kdeg values are significantly different) or heart proteome (median

t1/2corr 5.8 days; 84% of kdeg values are significantly different) after

cell cycle correction (Fig 4G and H). These data indicate that protein

lifetime is broadly influenced by other environmental factors

beyond cell proliferation rate. Consistent with our findings, protein

lifetimes have also been found to differ significantly between nondi-

viding cell types in culture (Dörrbaum et al, 2018), as well as in the

same cell type (fibroblasts) isolated from different mammals

(Swovick et al, 2020). One potential explanation for these differ-

ences could be variation in the composition and activity of protein

folding chaperones, the ubiquitin-proteasome system, and/or the

autophagy machinery across tissues (Mizushima et al, 2004; Jenkins

et al, 2020; Vonk et al, 2020).

Peroxisomes, lipid droplets, and mitochondria have highly
variable lifetimes across tissues

To evaluate the extent of variability in kdeg across tissues, we deter-

mined the normalized cross-tissue dispersion (D) of kdeg for the 967

proteins shared across the liver, fat, and heart datasets (see Mate-

rials and Methods; Appendix Fig S14; Dataset EV7). We then used

this metric to dissect variability in protein lifetime across tissues,

focusing on constituents of cellular organelles (Fig 5), multiprotein

complexes (Fig 6) and pathways (Appendix Fig S15).

Among proteins that are residents of specific subcellular organ-

elles, components of the actin cytoskeleton and residents of the

nucleus have much less variable lifetimes than the proteome as a

whole (Fig 5A and B). In contrast, constituents of peroxisomes, lipid

droplets, and mitochondria have significantly more variable life-

times across tissues than the proteome as a whole (Fig 5A;

Figure 5. Cross-tissue dispersion analysis of protein turnover rates indicates nonrandom variability in protein turnover.

A Cross-tissue dispersion analysis of kdeg values across heart, liver, and fat by cellular organelle. Box (Tukey) plot center line indicates median; box limits indicate 25th

to 75th percentiles; whiskers indicate 1.5× interquartile range; points indicate outlier values. Blue indicates a subset has a significantly elevated median dispersion
of kdeg values across tissues; red indicates a subset has a significantly decreased dispersion of kdeg values across tissues (Mann–Whitney test). The peroxisomal
enzyme catalase, the mitochondrial resident protein Fth1, and the lipid droplet enzyme MGL1 are highlighted as residents of each organelle with the most
extremely variable lifetimes across tissues.

B–E Analysis of kdeg rates across mitochondrial subcompartments. MOM: mitochondrial outer membrane; IMS: intermembrane space; MIM: mitochondrial inner
membrane. Numbers indicate total proteins detected in each subcompartment. Proteins of the MOM and IMS turn over significantly faster than proteins of the
MIM and matrix in the heart (C) and liver (D). Box (Tukey) plot center line indicates median; box limits indicate 25th to 75th percentiles; whiskers indicate 1.5×
interquartile range; points indicate outlier values. *indicates P < 0.05; ***indicates P < 0.001. In contrast, all mitochondrial subcompartments turn over at similar
rates in the white adipose tissue (E) (Kruskal–Wallis test). See also Dataset EV6.
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Appendix Fig S16), implying that the degradative flux of these

organelles varies from tissue to tissue. These organelles can be

degraded by specialized variants of autophagy termed pexophagy

(Dunn et al, 2005), lipophagy (Singh et al, 2009), and mitophagy

(Youle & Narendra, 2011), respectively.

Peroxisomes play major roles in lipid catabolism, and their bio-

genesis is induced by signaling through peroxisome proliferator ago-

nist receptors (PPARs) and other mechanisms. Upon removal of

biogenesis-promoting signals, excess peroxisomes are degraded by

pexophagy (Monastyrska & Klionsky, 2006). This process was first

documented in the liver; consistently, we observe rapid turnover of

peroxisomal proteins in this tissue. Our data indicate that peroxi-

somes are also degraded rapidly in the intestine but are degraded

more slowly in the heart and adipose tissue (Appendix Fig S16).

Lipid droplets (LDs) are the major intracellular sites of lipid stor-

age. In response to nutrient deprivation, LDs mobilize lipids either

by lipolysis to generate fatty acids or by lipophagy, which involves

delivery of both the protein and lipid components of LDs to the lyso-

some (Zechner et al, 2017). Lipophagic flux is high in the liver

(Singh et al, 2009), and we observe rapid degradation of LD proteins

in this organ (Appendix Fig S16). In contrast, LD proteins are longer

lived in the white adipose tissue and in the heart. This is somewhat

unexpected, as adipose tissue rapidly mobilizes free fatty acids

when nutrients are low (Lafontan & Langin, 2009), while heart tis-

sue depends on fat oxidation for energy (Pascual & Coleman, 2016).

This outcome indicates that lipophagic flux is lower in these tissues

and suggests that fatty acids are instead mobilized from LDs by

lipolysis while sparing LD-resident proteins from turnover.

Mitochondria are long-lived organelles in many tissues, including

the brain (Price et al, 2010; Fornasiero et al, 2018), heart (Lau et al,

2016), and skeletal muscle (Bomba-Warczak et al, 2021; Krishna

et al, 2021). Consistent with these recent studies, we find that mito-

chondria are long-lived in the heart (median mitochondrial protein

t1/2 of 18.1 days vs. 5.8 days for total proteome). Mitochondria are

also long-lived in the white adipose tissue (median mitochondrial

protein t1/2 of 10.5 days vs. 6.8 days for total proteome). Surpris-

ingly, however, mitochondria turn over more rapidly in the liver

(median mitochondrial protein t1/2 of 3.5 days vs. 2.9 days for total

proteome; Appendix Fig S16). This finding suggests major differ-

ences in mitochondrial regulation and function in this organ but is

consistent with a previous report of high mitophagy flux in the liver

using an in vivo reporter system (McWilliams et al, 2016).

We achieved high coverage of the mitochondrial proteome, mak-

ing it possible to inspect the turnover of mitochondrial subcompart-

ments across tissues (Fig 5B–E). Proteins of the mitochondrial outer

membrane (MOM) and the intermembrane space (IMS) generally

turn over more rapidly than proteins of internal compartments such

as the mitochondrial inner membrane (MIM) and the matrix. This

disparity is most apparent in the heart and liver (Fig 5C and D). A

previous analysis of protein lifetimes in the brain similarly reported

more rapid turnover of MOM proteins (Fornasiero et al, 2018).

Notably, the MOM and IMS are accessible to the cytosol while the

MIM and matrix are sequestered. These data suggest that selective

degradation of MOM/IMS proteins occurs at a significant rate in

many tissues, including the heart, liver, and brain (Fornasiero et al,

2018). This could be achieved by extraction and delivery to the

proteasome, piecemeal autophagy, and/or sequestration into

mitochondrial-derived vesicles (Winter & Becker, 2021). In contrast,

all mitochondrial subcompartments exhibit coherent turnover in

white adipose tissue (Fig 5E). This could indicate that mitochondria

are degraded more frequently by organellar autophagy (mitophagy)

than by selective degradation of mitochondrial components in this

tissue. Interestingly, mitophagy plays major roles in the differentia-

tion and maintenance of white adipocytes, which characteristically

have lower numbers of mitochondria (Altshuler-Keylin et al, 2016).

Altogether, our data indicate that both the overall flux of mitochon-

drial turnover and the mechanisms used to achieve turnover vary

across tissues.

Multiprotein complex subunits have coherent lifetimes within
and across tissues

It has been suggested that participation in stable multiprotein

complexes might protect proteins from degradation and extend

protein half-life (McShane et al, 2016; Mallik & Kundu, 2018).

We evaluated the degradation kinetics of 12 multiprotein com-

plexes for which at least five subunits were detected in all four

tissues and found that in general, multiprotein complex subunits

do not exhibit significantly lower degradation rates than the pro-

teome median (Fig 6A and B). This indicates that participation in

a stable multiprotein complex is not sufficient to dramatically

extend protein lifetime compared to the proteome average. It is

important to note, however, that this steady-state measurement

cannot determine whether nascent complex subunits are selec-

tively degraded if they fail to assemble correctly after synthesis

(McShane et al, 2016).

Some multiprotein complexes have been reported to exhibit

coherent subunit turnover, perhaps reflecting their stable associa-

tion from biogenesis to degradation (Mathieson et al, 2018). To

determine whether complex subunits exhibit more similar turnover

rates than would be expected by random chance, we calculated the

intratissue kt dispersion (d) for multiprotein complexes for which at

least five subunits were detected (12–24 complexes per tissue). For

comparison, we calculated d for an equivalent number of randomly

chosen proteins. Comparing these values indicated that most multi-

protein complexes turn over coherently (Fig 6C and D). Consistent

with a previous report (Mathieson et al, 2018), we also find that the

CCT/TriC chaperonin complex is an outlier whose subunits have

extremely consistent turnover rates (low d, Fig 6C, solid blue).

Other multiprotein complexes with highly coherent turnover include

the ribosome, proteasome, oligosaccharyltransferase (OST) com-

plex, and the mitochondrial respiratory chain complexes (Fig 6D).

In striking contrast, the spliceosome is an outlier whose components

have widely varying turnover rates (high d; Fig 6C, solid red; Fig

6D). Since spliceosome assembly is cyclical and coupled with cata-

lytic activity (Matera & Wang, 2014), we asked whether individual

spliceosome subcomplexes exhibit coherent turnover rates. We eval-

uated spliceosome subcomplexes in the intestine and liver, where

we had coverage of at least five subunits of the exon junction com-

plex, the U2 subcomplex, and the A complex. Interestingly, even

within these smaller subcomplexes we saw high intrasubunit disper-

sion in turnover rates (Appendix Fig S17). We speculate that this

unusually high intracomplex variability reflects the transience of

interactions between many spliceosomal subunits; it has been esti-

mated that > 30 proteins are exchanged during some catalytic steps

of the splicing cycle (Hegele et al, 2012).
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Figure 6. Analysis of protein turnover for subunits of multiprotein complexes.

A The median decile of kt for each multiprotein complex with at least five subunits detected. *indicates complexes that turn over significantly more slowly, and
#indicates complexes that turn over significantly faster than the proteome median in all tissues.

B Median decile kt for multiprotein complexes that turn over significantly faster than the proteome median in all tissues. Median decile kt for multiprotein complexes
(black bar) does not deviate from the proteome median (5th decile).

C Intracomplex dispersion was computed for complexes with at least five subunits detected (blue) and a random dispersion value was calculated by computing
dispersion for an equivalent number of randomly chosen proteins (gray). Between 12 and 25 multiprotein complexes analyzed per tissue (see Source Data). Black bar,
median. Multiprotein complexes exhibit a significantly lower intracomplex dispersion than would be expected by chance (*P < 0.05; **P < 0.01; ***P < 0.001, Mann–
Whitney test). The spliceosome (red) is an outlier with high intracomplex dispersion; the TRiC/chaperonin complex (solid blue) is an outlier with low intracomplex
dispersion.

D Heatmap of intracomplex dispersion across tissues for 12 multiprotein complexes with at least five subunits detected in all tissues.
E Analysis of normalized cross-tissue dispersion of kdeg by multiprotein complex compared across liver, heart, and fat datasets. P-values indicate significance of devia-

tion from proteome mean (Mann–Whitney test). While the small and large subunits of the ribosome have extremely low cross-tissue dispersion, outlier subunits
Rps25 and Rpl10 have more variability across tissues (solid red). Box (Tukey) plot center line indicates median; boxes indicate 25th to 75th percentiles; whiskers indicate
1.5× interquartile range; points indicate outlier values.

F kdeg values of ribosome subunits. See also Dataset EV7.

Source data are available online for this figure.
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We next asked whether multiprotein complex lifetimes are consis-

tent or variable across tissues by calculating the cross-tissue kdeg dis-

persion (D) of individual subunits across the liver, heart, and fat.

Components of mitochondrial respiratory chain complexes were the

only complex subunits that had significantly higher D than the prote-

ome median (Fig 6E), which is likely due to the dramatic differences

in mitochondrial lifetime across tissues (Fig 5). Apart from these out-

liers, other multiprotein complex subunits had average or signifi-

cantly lower than average values of D. We noted that the small and

large subunits of the ribosome had extremely low D values (Fig 6E),

and that the stability of the small and large subunits tracked very

closely with each other (Fig 6F). The ribosome also has a very con-

sistent half-life across fibroblasts derived from a range of mamma-

lian species (Swovick et al, 2020), indicating that ribosome turnover

is very tightly controlled by unknown mechanisms. However, Rpl10

and Rps25 had much more variable kdeg values than other ribosomal

proteins (Fig 6E and F). Interestingly, Rpl10 association is a key late

regulatory step in large subunit biogenesis (Bussiere et al, 2012), and

Rps25 is incorporated only in a subset of ribosomes that are

endowed with unique translational specificity (Shi et al, 2017).

Rpl10 turns over faster than other large subunit components in the

liver and intestine, while Rps25 turns over faster than most small

subunit components in the heart (Fig 6F). These data suggest nodes

of ribosome biogenesis control that vary across tissues.

Discussion

Here we report the development of TRAIL, a multiplexed 15N

isotope-labeling workflow that enables simultaneous measurements

of protein lifetime and cellular lifetime from the same tissue. To our

knowledge, this is the first study to advance a method for deriving

cell turnover rates from 15N labeling. Mass spectrometric quantifica-

tion of isotope incorporation into nucleosides provides high preci-

sion, sensitivity, and accuracy. In contrast to other frequently used

approaches for quantifying cell turnover, 15N has no detectable tox-

icity, even through multiple generations of continuous labeling in

mice (McClatchy et al, 2007; Savas et al, 2012), opening the possi-

bility of extending TRAIL to accurately define the turnover rates of

slowly proliferating cell types.

By sensitively measuring cell turnover and protein turnover in

parallel, TRAIL adds a critical layer of context to analysis of proteos-

tasis. We have unambiguously determined that protein lifetimes

vary widely across tissues, and that sequence features as well as cell

turnover and additional environmental factors shape protein

lifetime. Our data suggest that long-lived proteins experience a very

different life cycle in postmitotic versus proliferative tissues. Cell

and protein turnover flux occur at comparable rates in the prolifera-

tive intestine, such that the proteome is renewed roughly every

3 days as the epithelium renews (Fig 4). In contrast, protein turn-

over outpaces cell turnover in slowly proliferative tissues, and life-

times of individual proteins spread over a broader dynamic range.

In this context, protein turnover is both sequence-selective (Fig 3)

and coordinated across multiprotein complex subunits (Fig 6). We

speculate that only in this context would long-lived proteins and

complexes meaningfully “age”—meaning that they accumulate oxi-

dative damage, misfold, and lose their function, which would in

turn lead to age-linked tissue dysfunction. We have also uncovered

evidence that the rate of organelle degradation, perhaps by autop-

hagy of peroxisomes, lipid droplets, and mitochondria, varies

widely across tissues (Fig 5). Why do some proteins and organelles

turn over at such variable rates? It is possible that protein damage

occurs more rapidly in some tissues than in others, perhaps linked

to the variable rate of production of reactive oxygen species and

other damaging agents during normal cellular metabolism. A sec-

ond, nonexclusive possibility is that the activity and/or selectivity of

protein folding and/or degradation machineries varies across cell

types and tissues (Vonk et al, 2020). Intriguingly, in vivo reporters

of the proteasome and of autophagy do suggest variable flux across

tissues (Mizushima et al, 2004; Jenkins et al, 2020).

In the future, we anticipate that TRAIL can be applied to explore

the consequences of aging and disease on tissue homeostasis. How-

ever, there are some limitations of our approach to consider. Our

continuous labeling approach must assume maintenance of homeo-

static balance over the time frame of the experiment—an assump-

tion that is more likely to be valid over shorter timescales and in

healthy tissues, but may not prove to be true over longer timescales

or in diseased tissues. Our approach also does not address the con-

tribution of different cell types to bulk measurements of cell turn-

over or protein turnover. Importantly, these bulk tissue

measurements report a weighted average of the turnover behavior

of the most abundant cell types in each tissue. We surmise that our

data most accurately reflect the turnover of proteins that are broadly

expressed in most cell types of the tissues analyzed. Overall, we

were able to profile the 1,500–3,000 most abundant proteins per tis-

sue, and we find very few cell type-specific proteins in these data-

sets (Appendix Fig S13). Future studies may involve computational

deconvolution or sorting of individual abundant cell types from tis-

sues of interest in order to generate cell type-resolved maps of cell

and proteome lifetime.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Experimental Models

C57BL/6J (M. musculus) Jackson Labs n/a

Chemicals, Enzymes and other reagents
14N-labeled mouse chow Silantes 231004650

15N-labeled mouse chow Silantes 231304650
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

TRIzol Invitrogen 15596026

Benzonase EMD Millipore 70664

Shrimp alkaline phosphatase NEB M0371

Phosphodiesterase I Abnova P5263

Pierce™ Protein BCA Assay Thermo Fisher 23225

TMTpro 16plex labeling kit Thermo Fisher A44520

S-Trap Columns Protifi

Spin-X UF Concentrators Corning 431478

Software

Proteome Discoverer Thermo Scientific

XCalibur Thermo Scientific

R Version 4.1.0 https://www.r-project.org/

Other

Fusion Lumos Tribrid MS Thermo Fisher

Q-Exactive MS Thermo Fisher

Methods and Protocols

Metabolic labeling of mice and tissue isolation
We designed a 6-timepoint, 32-day SILAM labeling time course (0,

2, 4, 8, 16, and 32 days of labeling) with a total of three animals of

both sexes per labeled timepoint, and two animals for the day 0

(unlabeled) timepoint. Time courses were performed in male and

female wild-type C57Bl/6 mice at approximately 9 weeks of age.
14N and 15N mouse chow was obtained from Silantes. Animals were

first habituated to the chow formulation by feeding 14N (normiso-

topic) food for 1 week and monitoring animal weight. Animals

maintained normal weight through the duration of the time course.

Animals were then transitioned to 15N chow throughout the labeling

period (roughly 3 g/animal/day). Animals were then sacrificed by

CO2 inhalation followed by cervical dislocation, followed by tissue

dissection and flash freezing by submersion in liquid nitrogen.

These animal experiments were performed in compliance with rele-

vant ethical regulations and with approval by the Institutional Ani-

mal Care and Use Committee at UCSF (IACUC protocol number

AN178187, PI: A.B.).

Protein extraction and sample preparation for LC–MS/MS
Protein extraction

Approximately 30 mg of frozen tissue was excised on dry ice with a

clean razorblade and placed in a fresh tube. 100 μl of protein extrac-

tion buffer (PEB: 5% SDS, 100 mM TEAB, protease and phospha-

tase inhibitors, pH ~ 7) was added to the tube. The tissue was

rapidly minced with clean dissection scissors on ice for 30–60 s until

no large pieces remained. PEB was added to bring the final volume

to 600 μl, then the sample was transferred to a Dounce homoge-

nizer. The sample was homogenized for ~ 40 strokes with the tight

pestle, then was transferred to a clean microcentrifuge tube. The

sample was then probe sonicated at 4C (10% amplitude, 10 s, 2

cycles) before being centrifuged (21,000 g, 11 min, 4C). The super-

natant was transferred to a clean tube, and aliquots were separated

for proteomics and protein quantification by microBSA assay

(Pierce).

Trypsinization

Samples were diluted to 1 mg/ml in 5% SDS, 100 mM TEAB, and

25 μg of protein from each sample was reduced with dithiothreitol

to 2 mM, followed by incubation at 55°C for 60 min. Iodoacetamide

was added to 10 mM and incubated in the dark at room temperature

for 30 min to alkylate the proteins. Phosphoric acid was added to

1.2%, followed by six volumes of 90% methanol, 100 mM TEAB.

The resulting solution was added to S-Trap micros (Protifi), and

centrifuged at 4,000 g for 1 min. The S-Traps containing trapped

protein were washed twice by centrifuging through 90% methanol,

100 mM TEAB. 1 μg of trypsin was brought up in 20 μl of 100 mM

TEAB and added to the S-Trap, followed by an additional 20 μl of
TEAB to ensure the sample did not dry out. The cap to the S-Trap

was loosely screwed on but not tightened to ensure the solution

was not pushed out of the S-Trap during digestion. Samples were

placed in a humidity chamber at 37°C overnight. The next morning,

the S-Trap was centrifuged at 4,000 g for 1 min to collect the

digested peptides. Sequential additions of 0.1% TFA in acetonitrile

and 0.1% TFA in 50% acetonitrile were added to the S-trap, centri-

fuged, and pooled. Samples were frozen and dried down in a Speed

Vac (Labconco) prior to TMTpro labeling.

TMT labeling

Samples were reconstituted in TEAB to 1 mg/ml, then labeled with

TMTpro 16plex reagents (Thermo Fisher) following the manufac-

turers protocol. Briefly, TMTpro tags were removed from the −20°C
freezer and allowed to come to room temperature, after which ace-

tonitrile was added. Individual TMT tags were added to respective

samples, and the reaction was allowed to occur at room tempera-

ture for 1 h. 5% hydroxylamine was added to quench the reaction,

after which the samples for each experiment were combined into a

single tube. Since we performed quantitation on the unlabeled
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peptides, 0 day samples were added to four of the unused channels,

increasing the signal for the unlabeled peptides. TMTpro-tagged

samples were frozen, dried down in the Speed Vac, and then

desalted using homemade C18 spin columns to remove excess tag

prior to high pH fractionation.

High pH fractionation

Homemade C18 spin columns were activated with two 50-μl washes

of acetonitrile via centrifugation, followed by equilibration with two

50-μl washes of 0.1% TFA. Desalted, TMTpro-tagged peptides were

brought up in 50 μl of 0.1% TFA and added to the spin column.

After centrifugation, the column was washed once with water, then

once with 10 mM ammonium hydroxide. Fractions were eluted off

the column with centrifugation by stepwise addition of 10 mM

ammonium hydroxide with the following concentrations of acetoni-

trile: 2, 3.5, 5, 6.5, 8, 9.5, 11, 12.5, 14, 15.5, 17, 18.5, 20, 21.5, 27,

and 50%. The 16 fractions were concatenated down to 8 by combin-

ing fractions 1 and 9, 2 and 10, 3 and 11, etc. Fractionated samples

were frozen, dried down in the Speed Vac, and brought up in 0.1%

TFA prior to mass spectrometry analysis.

LC–MS/MS analysis
Data collection

Peptides from each fraction were injected onto a homemade 30-cm

C18 column with 1.8-μm beads (Sepax), with an Easy nLC-1200

HPLC (Thermo Fisher), connected to a Fusion Lumos Tribrid mass

spectrometer (Thermo Fisher). Solvent A was 0.1% formic acid in

water, while solvent B was 0.1% formic acid in 80% acetonitrile.

Ions were introduced to the mass spectrometer using a Nanospray

Flex source operating at 2 kV. The gradient began at 3% B and held

for 2 min, increased to 10% B over 7 min, increased to 38% B over

94 min, then ramped up to 90% B in 5 min and was held for 3 min,

before returning to starting conditions in 2 min and re-equilibrating

for 7 min, for a total run time of 120 min. The Fusion Lumos was

operated in data-dependent mode, employing the MultiNotch Syn-

chronized Precursor Selection MS3 method to increase quantitative

accuracy (McAlister et al, 2014). The cycle time was set to 3 s.

Monoisotopic Precursor Selection (MIPS) was set to Peptide. The

full scan was done over a range of 400–1,500 m/z, with a resolution

of 120,000 at m/z of 200, an AGC target of 4e5, and a maximum

injection time of 50 ms. Peptides with a charge state between 2 and

5 were picked for fragmentation. Precursor ions were fragmented by

collision-induced dissociation (CID) using a collision energy of 35%

and an isolation width of 1.0 m/z. MS2 scans were collected in the

ion trap with an AGC target of 1e4 and a maximum injection time of

35 ms. MS3 scans were performed by fragmenting the 10 most

intense fragment ions between 400–2,000 m/z, excluding ions that

were 40 m/z less and 10 m/z greater than the precursor peptide,

using higher energy collisional dissociation (HCD). MS3 ions were

detected in the Orbitrap with a resolution of 50,000 at m/z 200 over

a scan range of 100–300 m/z. The isolation width was set to 2 Da,

the collision energy was 60%, the AGC was set to 1e5, and the max-

imum injection time was set to 100 ms. Dynamic exclusion was set

to 45 s.

Data analysis

Raw data were searched using the SEQUEST search engine within

the Proteome Discoverer software platform, version 2.4 (Thermo

Fisher), using the Uniprot mouse database (downloaded January

2020). Trypsin was selected as the enzyme allowing up to two

missed cleavages, with an MS1 mass tolerance of 10 ppm, and an

MS2 mass tolerance of 0.6 Da. Carbamidomethyl on cysteine, and

TMTpro on lysine and peptide N terminus were set as a fixed modi-

fications, while oxidation of methionine was set as a variable modi-

fication. Percolator was used as the FDR calculator, filtering out

peptides which had a q-value greater than 0.01. Reporter ions were

quantified using the Reporter Ions Quantifier node, with an integra-

tion tolerance of 20 ppm, and the integration method being set to

“most confident centroid”; the average reporter ion signal-to-noise

threshold was set to 5. Protein abundances were calculated by sum-

ming the signal to noise of the reporter ions from each identified

peptide, while excluding any peptides with an isolation interference

of > 30%, or SPS matches < 65%.

Kinetic model

The kinetic model applied in this study has been previously

described (Welle et al, 2016). Briefly, we are assuming that protein

synthesis is a zero order process, occurs at a constant fractional

rate, and that that the total protein concentration of each cell does

not change during the experimental time course. The dilution of the

protein pool due to cell division can be modeled as a first-order

exponential process. Thus, the fractional turnover of unlabeled pro-

teins during the labeling time course can be regarded as a first-order

kinetic process that can be modeled based on the following expo-

nential equation:

fraction unlabeled protein tð Þ ¼ e�kt�t (1)

And:

kt ¼ kdeg þ kdiv

where kt is the clearance rate (observed rate of fractional labeling),

kdeg is the rate of protein degradation and kdiv is the rate of cell

division.

The determination of kt values were conducted as previously

described (Welle et al, 2016) using the decay of the TMT reporter

signals of unlabeled proteins. Protein-level TMT reporter abun-

dances for unlabeled proteins for each replicate experiment were

first normalized by dividing by the intensity of the t0 reporter and

then the replicate experiments were aggregated in a single kinetic

curve. In fitting the exponential decay curves of the unlabeled pro-

tein signals, a constant fractional baseline at infinite time was incor-

porated in the fitting equation. The equation used for fitting the

curves was therefore: intensity ¼ baselineþ 1�baselineð Þ � e�kt�time.

The goodness of fit for least squares fits were assessed by determin-

ing the R2, P-value and t-statistic of the fits (see Dataset EV1). For

subsequent analyses, only protein kt measurements that were

obtained from all three replicate experiments, incorporated data from

four or more peptide spectral matches (PSMs), and had t-statistic

values greater than three were considered.

Nucleic acid extraction and sample preparation for LC–MS/MS
Genomic DNA extraction

Approximately 30 milligrams of frozen tissue was excised on dry ice

with a clean razorblade and placed in a fresh tube. 100 μl of TRIzol
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reagent (Invitrogen) was added and the tissue was rapidly minced

with clean dissection scissors on ice for 30–60 s until no large pieces

remained. An additional 400 μl of TRIzol was added, and the sample

was then transferred to a Dounce homogenizer. The tissue was

subjected to ~40 strokes with the tight pestle until smooth, then

transferred back to the original tube. The sample was incubated for

at least 5 min before the addition of 100 μl chloroform followed by

mixing and a further 3 min of incubation. The sample was then

centrifuged (12,000 g, 15 min, 4C) and the upper RNA-containing

aqueous layer was discarded. 150 μl of absolute ethanol was added

to the remaining sample, then inverted several times to mix. After 3

min of incubation at room temperature, the sample was centrifuged

(2,000 g, 5 min, 4C). The protein-containing supernatant was

removed, then the DNA-containing pellet was resuspended in 500 μl
of absolute ethanol and incubated for 30 min. The sample was then

centrifuged (2,000 g, 5 min, 4C), and the supernatant discarded.

Sequential washes were then repeated with 95, 85, and 75% etha-

nol, after which the pellet was air-dried for 5–10 min. The pellet

was then resuspended in 200 μl nuclease-free water (Ambion) at

56C, then incubated at 56C with shaking for 30 min to resuspend

the pure DNA. The sample was centrifuged (12,000 g, 10 min, 4C),

then the supernatant containing pure DNA was moved to a clean

tube. DNA concentration was determined with a NanoDrop

spectrophotometer.

Digestion of genomic DNA to short oligonucleotides

3–5 micrograms of pure genomic DNA was diluted to a 50 μl volume

in nuclease-free water, then combined with 50 μl of 2× Dinucleotide

Buffer (DB: 5 mU/μl benzonase, 40 mU/μl shrimp alkaline phospha-

tase, 20 mM Tris pH 7.9, 100 mM NaCl, 20 mM MgCl2). Samples

were incubated overnight at 37C. Spin-X UF Concentrators

(Corning) were rinsed with 200 μl buffer (20 mM Tris pH 7.9,

100 mM NaCl, 20 mM MgCl2), then samples were applied and

centrifuged through (12,000 g, 5 min, RT). The eluate was collected

for analysis.

Digestion of genomic DNA to mononucleosides

We extracted mononucleosides from genomic DNA similarly to a

previously described method (Quinlivan & Gregory, 2008) with

some modifications. 1–3 micrograms of pure genomic DNA was

diluted to a 50 μl volume in nuclease-free water, then combined

with 50 μl of 2× Mononucleoside Buffer (MB: 5 mU/μl benzonase,
40 mU/μl shrimp alkaline phosphatase, 60 uU/μl phosphodiesterase
I, 20 mM Tris pH 7.9, 100 mM NaCl, and 20 mM MgCl2). Samples

were incubated overnight at 37C. Spin-X UF Concentrators

(Corning) were rinsed with 200 μl buffer (20 mM Tris pH 7.9,

100 mM NaCl, 20 mM MgCl2), then samples were applied and

centrifuged through (12,000 g, 5 min, RT). The eluate was collected

for analysis.

Mononucleoside and dinucleoside LC–MS/MS
Mononucleotide analyses were carried out by adapting a previously

described method (Su et al, 2014) using a Dionex Ultimate 3000

UHPLC coupled with a Q Exactive Plus mass spectrometer (Thermo

Scientific). After purification, analytes were separated on a Hypersil

Gold 2.1 × 150 mm column, protected by a 2.1 × 10 mm Hypersil

Gold guard column (Thermo Scientific). The mobile phases were A:

0.1% formic acid in water, and B: 0.1% formic acid in acetonitrile.

The flow rate was set to 400 μl/min, and the column oven was set

to 36°C. 10 μl of each sample was injected, and the analytes were

eluted using the following gradient: 0 min, 0% B; 6 min, 0% B; 8.5

min, 80% B; 9.5 min, 80% B; 10 min, 0% B; 13 min, 0% B. The Q

Exactive Plus was operated in positive mode with a heated electro-

spray ionization (HESI) source. The spray voltage was set to 3.5 kV,

the sheath gas flow rate was set to 40, and the auxiliary gas flow

rate set to 7, while the capillary temperature was set to 320°C. A
parallel reaction monitoring (PRM) method was used to quantify the

unlabeled nucleotide, along with all of its N15 isotopes in a single

scan. This was accomplished by using wide (8 m/z) isolation widths

when selecting the nucleotides for fragmentation. By employing this

method, we were able to quantify the level of labeling by looking at

the intensity of each N15-labeled base in the MS2 scan. Fragment

ions were detected in the Orbitrap with a resolution of 70,000 at m/z

200. Using a high-resolution MS2 scan allowed us to resolve N15 and

C13 isotopes. Peak areas from the fragment ions were extracted with

a 10 ppm mass tolerance using the LC Quan node of the XCalibur

software (Thermo Scientific).

Dinucleotide analyses were carried out using the same instru-

mentation, column, mobile phases, column temperature, and flow

rate employed by the mononucleotide experiments. The gradient

was changed to optimize dinucleotide separation as follows: 0 min,

5% B; 0.5 min, 5% B; 2.5 min, 90% B; 3.25 min, 90% B; 3.5 min,

5% B; 5.5 min, 5% B. The Q Exactive Plus was operated using the

same tune settings as the mononucleotide experiment. However,

instead of a PRM method, a full scan method from 500–650 m/z was

developed to quantify the dinucleotides dCdC, TT, dAdA, and dGdG,

along with their corresponding N15 isotopes. Precursor ions were

detected in the Orbitrap with a resolution of 140,000 at m/z 200,

using the high-resolution MS1 scan to try to separate N15 and C13

isotopes as much as possible. Peak areas from the fragment ions

were extracted with a 10 ppm mass tolerance using the LC Quan

node of the XCalibur software (Thermo Scientific).

Measurement of kdiv
To accurately measure rates of cell division (kdiv) while factoring in

the effects of incomplete labeling and nucleotide recycling, we con-

sidered the time-dependent labeling patterns of mononucleotides

and dinucleotides derived from genomic DNA. Upon initiation of
15N labeling, newly synthesized DNA strands can incorporate nucle-

otides from a precursor pool with potentially complex mixture of

partially labeled species (Appendix Fig S8A). For example, a newly

incorporated deoxyadenosine (dA) can be derived from fully 15N-

labeled nucleotides derived from the dietary source, partially labeled

species (containing one to four 15N atoms) derived by biosynthesis

from incompletely labeled 15N precursors, and completely unlabeled

nucleotides derived from recycling. As an example, a typical label-

ing pattern for dA from one of our intestine samples is shown in

Appendix Fig S10B showing the shift in the isotopologue distribu-

tion over time. After correcting for the natural isotopic distribution,

the peaks with heavier nonmonoisotopic masses (+1, +2, +3, etc.)
can be assumed to have been derived from newly synthesized

strands. However, the monoisotopic peak (0) can potentially have

been derived from both the original unlabeled strand, as well as

newly synthesized strands that had incorporated recycled unlabeled

nucleotides. Therefore, it may not be possible to accurately deter-

mine the ratio of new to old strands (and hence kdiv) from the
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mononucleotide data alone. The labeling pattern of dinucleotides

(dAdA) resolves this ambiguity. The isotopologue distribution of

labeled (nonmonoisotopic) peaks in the dinucleotides spectra are

dependent on the composition of the nucleotide precursor pool. The

red envelope depicted in the dAdA spectra is the pattern that would

be expected if the precursor pool was composed solely of the labeled

(nonmonoisotopic) species observed in the corresponding mononu-

cleotide spectra (i.e., new strands did not contain any recycled unla-

beled nucleotides and the monoisotopic peaks observed in the

mononucleotide spectra were derived solely from old strands). If a

significant fraction of the monoisotopic peaks observed in the

mononucleotide spectra represents recycled nucleotides within new

strands, then the isotopologue distribution of labeled nucleotides

would shift accordingly (Appendix Fig S10C). Through regression

analyses, we determined that within all tissues and timepoints ana-

lyzed in this study, the isotopologue distributions of the dinucleo-

tide data could be best modeled based on the assumption that

newly synthesized strands had very low levels of fully unlabeled

nucleotides. Hence, the fractional population of labeled nonmonoi-

sotopic peaks within dinucleotide and mononucleotide data were

consistent with each other (Appendix Fig S10D) and could be used

to determine the fractional population of new strands. For each tis-

sue, fractional labeling of mononucleotide and dinucleotides for all

four bases were combined and the aggregated dataset was fit to a

single exponential equation to determine first-order rate constant for

division (kdiv). These data appear in Dataset EV4.

Analysis of proteomic data
Quality filtering and analysis of kt values

Proteomic data were acquired in the form of TMT replicates

containing full 6-timepoint time courses. Within each TMT replicate,

proteins were filtered to retain only those detected with at least

three peptide spectral matches (PSMs) in all timepoints. Proteins

that met these criteria were then filtered within each TMT replicate

based on goodness of fit using the t-statistic. The t-statistic is equal

to the turnover rate (kt) divided by the standard error of that value.

This metric determines to what extent measurement error influences

kt. We applied a minimum t-statistic cutoff of 3, meaning that the

magnitude of the turnover rate kt is at least three times the magni-

tude of the standard error. Between 50 and 63% of detected proteins

passed these coverage and goodness-of-fit criteria (Appendix Fig S3).

Along with the sample size, the t-statistic can be used to determine

a P-value that indicates the probability that the turnover rate

reported has a meaningful nonzero value. The kt, standard error,

t-statistic, and P-value for each protein are reported in Dataset

EV1. The kt, standard error, and sample size were used to per-

form per-protein statistical tests across tissues, to identify pro-

teins with significantly different turnover kinetics between

tissues. These data are reported in Dataset EV1.

Filtered kt values for each tissue were separated into deciles. Pro-

teins in the top decile (fastest kt) and bottom decile (slowest kt)

were subjected to gene ontology analysis to identify biological pro-

cesses (GO:BP) and cellular components (GO:CC) that were overrep-

resented, using the Gprofiler tool (Raudvere et al, 2019). Redundant

GO terms were filtered using ReVIGO (Supek et al, 2011), then

subjected to hierarchical clustering and presented in heatmap for-

mat with cell values corresponding to the significance of enrichment

for each term.

Analysis of protein sequence feature correlations with kt values

For proteins whose kt values passed the coverage and goodness-of-fit

criteria described above, protein sequence features were evaluated as

follows. Hydrophobicity was quantified by a grand average of the

hydropathy (GRAVY) score (Kyte & Doolittle, 1982). Molar abun-

dance of amino acid classes, isoelectric point, and molecular weight

were extracted using Pepstats (Madeira et al, 2022; https://www.ebi.

ac.uk/Tools/seqstats/emboss_pepstats/). The correlation of each of

these parameters to kt was evaluated by calculating the Spearman

correlation coefficient. Intrinsically disordered regions (IDRs) were

defined by identifying stretches of at least 40 amino acids having

IUPRED2 (M�esz�aros et al, 2018) disorder scores > 0.5; IDRs of at

least 40 amino acids in length have been previously shown to

correlate with shorter protein lifetimes in cultured cells and in yeast

(van der Lee et al, 2014; Fishbain et al, 2015). A validated list of

mouse IDPs was sourced from the DisPROT database (Quaglia et al,

2021).

Determination and analysis of cell cycle-corrected kdeg values

Cell cycle-corrected protein kdeg values were determined by

subtracting the cell doubling time (kdiv) for each tissue from the

apparent protein turnover rate (kt) determined in that tissue. In

the intestine, a significant proportion of the proteome had Kdeg

rates very similar to kdiv. Gene ontology analyses of this subset

of ~400 proteins was performed to identify biological processes

(GO:BP) and cellular components (GO:CC) that were overrepre-

sented, using Gprofiler (Raudvere et al, 2019). Redundant GO

terms were filtered using ReVIGO (Supek et al, 2011), and a bub-

ble plot of significance of enrichment versus similarity (semantic

space) was generated using Prism (GraphPad), where bubble

sizes correspond to the number of proteins mapped to a term. To

analyze trends in turnover for intrinsically disordered proteins

(IDPs), a list of curated and experimentally validated IDPs from

the DisProt database (Quaglia et al, 2021) was cross-referenced to

kdeg values.

Cross-tissue dispersion of kdeg values

Cross-tissue dispersion (D) was calculated on a protein-by-protein

basis for all proteins detected in the liver, heart, and fat tissues. D =
variance / mean, where variance (V) is the average of the squared

differences of each kdeg value from the mean kdeg value. Because D

is normalized to the mean kdeg value, it is independent of the magni-

tude of kdeg (see Appendix Fig S14). D values are reported in Dataset

EV7. Analysis of D by organelle was performed using annotations

from MitoCarta (Rath et al, 2020) for mitochondrial proteins, from a

recent proximity labeling study for lipid droplets (Bersuker et al,

2018), and manually curated annotations from UniProt for all

other organelles. Only UniProt annotations that listed a specific

organelle as the first affiliation were retained to limit multilocalizing

proteins.

Intracomplex dispersion of kdeg values for multiprotein complexes

A mouse proteome multiprotein complex subunit annotation set

from ComplexPortal (Meldal et al, 2018) was used to search for

multiprotein complexes with at least five subunits detected in the

liver, heart, intestine, or fat. Intracomplex dispersion for these com-

plexes was determined by calculating the dispersion (d = variance/

mean) of kdeg values for all subunits detected in a tissue.
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Determination of relative protein abundance within tissues

To evaluate relative protein abundance within tissues, technical rep-

licate unlabeled wild-type (WT) samples from each multiplexed

TMT run were first channel normalized, then the geometric mean

was calculated to determine mean normalized intensities for each

biological replicate. Protein abundance was then length-normalized

by dividing each protein’s normalized intensity by the number of

amino acids. Finally, samples were normalized for comparison

across biological replicates by normalizing each channel to the max-

imum value detected. The geometric mean abundance was calcu-

lated by determining the geometric mean of the length- and

channel-normalized protein abundance. These relative abundance

values were used to explore the relationship between protein abun-

dance and protein half-life (Fig 3; Appendix Fig S5).

Data availability

LC–MS/MS data have been deposited in the ProteomeXchange Con-

sortium via the PRIDE partner repository under the ID PXD033649

(http://www.ebi.ac.uk/pride/archive/projects/PXD033649).

Expanded View for this article is available online.
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