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TorsinA is a membrane-associated enzyme in the endo-

plasmic reticulum (ER) lumen that is mutated in DYT1

dystonia. How it remains in the ER has been unclear. We

report that a hydrophobic N-terminal domain (NTD) di-

rects static retention of torsinA within the ER by excluding

it from ER exit sites, as has been previously reported for

short transmembrane domains (TMDs). We show that

despite the NTD’s physicochemical similarity to TMDs, it

does not traverse the membrane, defining torsinA as a

lumenal monotopic membrane protein and requiring a

new paradigm to explain retention. ER retention and

membrane association are perturbed by a subset of non-

conservative mutations to the NTD, suggesting that a

helical structure with defined orientation in the mem-

brane is required. TorsinA preferentially enriches in ER

sheets, as might be expected for a lumenal monotopic

membrane protein. We propose that the principle of mem-

brane-based protein sorting extends to monotopic mem-

brane proteins, and identify other proteins including the

monotopic lumenal enzyme cyclooxygenase 1 (prostaglan-

din H synthase 1) that share this mechanism of retention

with torsinA.
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Introduction

Early-onset (DYT1) torsion dystonia is a neurological

movement disorder (Fahn, 1988) caused by a glutamic acid

deletion (DE) in the catalytic domain of torsinA (Ozelius et al,

1997). TorsinA is an AAAþ ATPase of the endoplasmic

reticulum (ER) and contiguous nuclear envelope (NE). The

specific cellular functions ascribed to torsinA vary widely

despite the fact that it has been a decade since the protein was

first described and linked to dystonia (Breakefield et al,

2008). Based on its membership in the AAAþ family of

ATPases (Ozelius et al, 1997; Hanson and Whiteheart, 2005),

it is likely that torsinA disassembles or changes the confor-

mation of a protein or protein complex in the ER or NE. The

DE mutation is thought to compromise this function (Dang

et al, 2005; Goodchild et al, 2005).

TorsinA is targeted to the ER lumen by an N-terminal

signal peptide. Analyses of torsinA’s subcellular localization,

processing, and glycosylation show that the signal peptide is

cleaved and the mature protein resides in the lumen of the ER

(Kustedjo et al, 2000; Hewett et al, 2003; Liu et al, 2003),

where it is a stable protein (Gordon and Gonzalez-Alegre,

2008; Giles et al, 2009). TorsinA’s binding partners include

the transmembrane proteins LULL1 in the ER and LAP1 in the

NE (Goodchild and Dauer, 2005; Naismith et al, 2009).

Abnormalities in NE structure (Naismith et al, 2004;

Goodchild et al, 2005) and effects on NE-localized LINC

complex proteins (Nery et al, 2008; Vander Heyden et al,

2009) when torsinA levels are perturbed suggest an important

function for this enzyme specifically at the NE. Other studies

point to additional functions elsewhere in the ER (Hewett

et al, 2008; Bragg et al, 2011).

The steady-state localization of torsinA in the ER and NE

demands that it escapes forward flux out of the ER into the

secretory pathway. This is a significant issue for all ER

resident proteins, and the underlying mechanisms are what

define the composition of the ER. Proteins intended for

efficient secretion are concentrated in nascent COPII vesicles

at ER exit sites (ERES) by specific interactions with subunits

of the COPII coat or, in the case of lumenal proteins, with

transmembrane receptors that in turn interact with COPII

subunits (Dancourt and Barlowe, 2010). However, proteins

without specific export signals also leave the ER in COPII

vesicles at a rate referred to as bulk flow. For soluble proteins

in the ER lumen, quantitative measurements indicate that

bulk flow empties the equivalent of half of the lumenal

volume every 40 min (Thor et al, 2009). Proteins that leave

the ER by bulk flow may return to the ER in COPI vesicles if

they are recognized by a recycling receptor. The prototype for

this is the KDEL receptor that recycles lumenal proteins with

the tetrapeptide KDEL at their C-terminus (Lewis et al, 1990).

For membrane proteins, there is less quantitative information

about the rate of bulk flow. There are some membrane

proteins that never leave the ER and are statically retained

by their transmembrane domain (TMD) (Rayner and Pelham,

1997; Yang et al, 1997; Duvet et al, 1998; Ronchi et al, 2008;

Daubner et al, 2010; Hsieh et al, 2010). This retention is

attributed to preferential partitioning of short TMDs into the

thinner and less ordered membrane of the ER, and the best

characterized of these TMDs has been shown to partition

differentially among subdomains of the ER (Ronchi et al,
Received: 3 March 2011; accepted: 16 June 2011; published online:
22 July 2011

*Corresponding author. Department of Cell Biology and Physiology,
Washington University (St Louis), Washington University School of
Medicine, 660 S. Euclid, Campus Box 8228, Saint Louis, MO 63110, USA.
Tel.: þ 1 314 747 4233; Fax: þ 1 314 362 7463;
E-mail: phanson22@wustl.edu

The EMBO Journal (2011) 30, 3217–3231 | & 2011 European Molecular Biology Organization | All Rights Reserved 0261-4189/11

www.embojournal.org

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 16 | 2011

 

EMBO
 

THE

EMBO
JOURNAL

THE

EMBO
JOURNAL

3217

http://dx.doi.org/10.1038/emboj.2011.233
http://dx.doi.org/10.1038/emboj.2011.233
mailto:phanson22@wustl.edu
http://www.embojournal.org
http://www.embojournal.org


2008). However, that there is a bulk flow of membrane

proteins is clear from the need for the TMD-specific recycling

receptor, Rer1 (Sato et al, 2003), and from studies showing

that small increases in the hydrophobicity of ER-retained

TMDs allow their escape from the ER (Rayner and Pelham,

1997; Yang et al, 1997; Ronchi et al, 2008; Hsieh et al, 2010).

How does torsinA achieve its localization to the ER? An

early study indicated that a hydrophobic domain at the N

terminus of the protein was required for ER localization

of human torsinA in heterologous cells (Liu et al, 2003).

However, the mechanism underlying localization was unclear

as neither the N-terminal domain (NTD) nor other regions of

the torsinA sequence contain any canonical targeting motifs.

A subsequent proposal was that torsinA remains in the ER

lumen because of protein–protein interactions with other

resident proteins (Callan et al, 2007). The facts that the N

terminus is not involved in interactions with known abun-

dant binding partners including LULL1 in the ER and LAP1 in

the NE (Vander Heyden et al, 2009), and that even highly

overexpressed torsinA remains in the ER (Kustedjo et al,

2000), suggest that this is unlikely. These discrepancies

raise the question of whether a previously unknown mechan-

ism might be responsible for keeping torsinA and similar

proteins in the ER. In this study, we provide evidence that

torsinA’s NTD is a monotopic membrane-associating domain

that is directly responsible for static retention in the ER.

Further, we identify other membrane proteins that appear

to behave similarly, providing new insight into protein sort-

ing in the early secretory pathway.

Results

TorsinA is a life-long ER resident

While all transmembrane and secreted proteins are transi-

ently found in the ER, proteins that reside in the ER either

never leave and are said to be statically retained or are

retrieved from the ER-to-Golgi intermediate compartment

(ERGIC) by COPI-mediated retrograde transport. Both are

commonly referred to as ER retention mechanisms. To de-

termine how torsinA remains in the ER, we incubated cells

expressing mGFP-tagged torsinA or cargo proteins at tem-

peratures that selectively block different trafficking steps.

At 151C, COPII-mediated transport from the ER proceeds

but recycling and forward transport from the ERGIC do not,

causing proteins that leave the ER to accumulate in the ERGIC

(Kuismanen and Saraste, 1989) while statically retained ER

proteins are unchanged. At 101C, COPII components assem-

ble together with cargo at ERES but do not generate free

vesicles (Tartakoff, 1986; Lotti et al, 1996; Mezzacasa and

Helenius, 2002). VSVG-(ts045)–mGFP, a plasma membrane-

targeted transmembrane protein that directly interacts with

COPII, accumulated dramatically with the COPI component

bCOP in the ERGIC (Figure 1A). TorsinA–mGFP, in contrast,

remained distributed throughout the ER and was absent from

the ERGIC after incubation at 151C (Figure 1B). After incuba-

tion at 101C, GFP fusions of VSVG-(ts045), the secreted

neuropeptide Y (NPY), and ER–GFP appeared at ERES

marked by the COPII component Sec31A, but torsinA–

mGFP did not (Figure 1C0–F0). Quantitating colocalization

confirmed that VSVG-(ts045), NPY, and ER–GFP are present

in ERES at 101C, while torsinA is not (Figure 1G). Notably, the

large increase in colocalization of VSVG-(ts045) with Sec31A

at 10 versus 39.51C is because VSVG-(ts045) is a temperature-

sensitive mutant protein that misfolds at 39.51C and interacts

with folding chaperones that keep it away from ERES; once

folded at a permissive temperature, its diacidic COPII

interacting motif promotes rapid accumulation at ERES

(Mezzacasa and Helenius, 2002). The fact that torsinA avoids

ERES to an extent comparable to misfolded VSVG, while ER–

GFP is readily detectable in ERES despite the lack of a forward

transport signal, suggests specific exclusion of torsinA from

ERES. This exclusion is similar to that previously described

for short TMD-containing proteins (Ronchi et al, 2008).

Finally, overexpressed torsinA–mGFP is efficiently retained

in the ER at physiological temperature (Figure 1B and F) and

is completely EndoH sensitive (Kustedjo et al, 2000), imply-

ing that torsinA rarely leaves the ER. Altogether, these data

indicate that torsinA is statically retained in the ER.

An NTD directs ER retention

Mature torsinA consists of a hydrophobic NTD, a short linker

region, and the AAAþ domain (Figure 2A). Building on an

earlier report showing that deleting the NTD led to secretion

of human torsinA from Drosophila S2 cells (Liu et al, 2003),

we deleted residues 26–43 from human torsinA and found

that the mutant protein appeared in the Golgi (Figure 2B) and

in the cell medium (Figure 2C) when expressed in human

U2OS cells. Both changes were blocked by brefeldin A (BFA),

indicating that without its NTD, torsinA traffics through the

classical secretory pathway. Deletion of the N terminus

allows torsinA to access ERES to an extent comparable to

the lumenal marker ER–GFP (Figure 2F–H, compare to Figure

1E and G), consistent with truncated torsinA exiting the ER

by bulk flow transport.

While the deletion led to secretion of all torsinA variants

analysed (Figure 2C), changes in intracellular distribution

were most apparent in cells expressing the D26–43 deletion in

combination with an E171Q mutation in the AAAþ domain

(Figure 2B). A likely explanation for this difference is that the

E171Q mutant is trapped in its ATP-bound state (Naismith

et al, 2004) and may therefore be more conformationally

stable than the wild-type enzyme, which can cycle through

different nucleotide states. In support of this, OOC-5, the

Caenorhabditis elegans orthologue of torsinA, is more ther-

mostable in the presence of nucleotide (Zhu et al, 2008) and

protein stability often correlates with the efficiency of secre-

tion (Kowalski et al, 1998).

To determine whether the NTD is sufficient for ER reten-

tion or whether the AAAþ domain is also required, we

attached torsinA’s signal sequence (1–25), the signal se-

quence plus the NTD (1–43), or the entire pre-AAA sequence

(1–67) to mGFP. (1–43)-mGFP and (1–67)-mGFP localized to

the ER while (1–25)-mGFP was present in the Golgi

(Figure 2D). Furthermore, only (1–25)-mGFP was detectable

in the cell medium (Figure 2E). The NTD is thus both

necessary and sufficient for ER retention, and determining

why it stays in the ER should delineate the mechanism

controlling torsinA localization.

Physical properties of the NTD

The NTD contains a pattern of hydrophobic and nonpolar

residues that is well conserved among torsinA orthologues

(Figure 3A), suggestive of a membrane-associating domain.

As previously shown, torsinA partitions almost completely

ER retention of monotopic membrane proteins
AB Vander Heyden et al

The EMBO Journal VOL 30 | NO 16 | 2011 &2011 European Molecular Biology Organization3218



into the hydrophobic phase in Triton-X-114 phase separation

experiments; this is reversed by deleting the NTD (Figure 3B)

(Liu et al, 2003; Vander Heyden et al, 2009). The NTD alone

controls this partitioning (Figure 3B) providing hydrophobic

behaviour typical of a TMD (Bordier, 1981). To determine

whether cellular factors or modifications contribute to this

hydrophobicity, we purified the NTD fused to maltose bind-

ing protein from Escherichia coli. Residues 21–43 or 21–67 of

torsinA shifted a fraction of this 45 kDa soluble protein into

the hydrophobic phase (Figure 3C), confirming that hydro-

phobicity is intrinsic to the NTD and is not the result of post-

translational modification or binding to another protein.

Since a-helices are the predominant secondary structure

found in membrane-associating domains (Fiedler et al, 2010),

we analysed the secondary structure of torsinA’s NTD. Far UV

circular dichroism shows that a synthetic peptide correspond-

ing to residues 21–43 of torsinA is unstructured in aqueous

buffer, but becomes partially helical as trifluoroethanol (TFE) is

added (Figure 3E). To test whether helicity also increases in a

membranous environment, we added detergent. In the pre-

sence of 20 mM SDS, the NTD peptide became as helical as in

50% TFE (Figure 3E). This stabilization of NTD structure in

detergent micelles implies that the peptide may also be partially

helical in the lipid bilayer (Tulumello and Deber, 2009).

The NTD associates directly and stably with membranes

To study the behaviour of the NTD in cellular membranes, we

analysed the diffusion of an NTD–mGFP fusion protein by

fluorescence recovery after photobleaching (FRAP) (Snapp

et al, 2003). While free GFP in the ER lumen has a diffusion
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Figure 1 TorsinA is a static ER resident and is excluded from ERES. (A, B) Epifluorescence microscopy of U2OS cells expressing VSVG-(ts045)–
GFP (at 39.51C) or torsinA–mGFP (at 371C). (A0, B0) Costaining with bCOP after 2 h incubation at 151C. (C–F) Confocal microscopy of cells
expressing VSVG-(ts045)–GFP (at 39.51C), NPY–GFP, ER–GFP, or torsinA–mGFP (at 371C). (C0–F0) Costaining with Sec31A after 2 h incubation
at 101C. Scale bars, 10mm. (G) Quantification of colocalization of the indicated GFP-tagged proteins with Sec31A. N420 cells for each
condition. Bars indicate standard error of the mean. *Significant difference between conditions (Po0.05).
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coefficient (Deff) of 7.67±0.44 mm2/s (Figure 3D), (1–67)-

mGFP diffuses at least an order of magnitude slower

(0.69±0.07 mm2/s) (Figure 3D). Single-pass TMD proteins

of the ER have a similar Deff (Snapp et al, 2003).

The NTD’s behaviour in cellular membranes is thus most

comparable to that of a membrane protein.

To determine whether the NTD associates directly with

membranes, we asked whether residues 21–67 of torsinA

fused to MBP could be coreconstituted into proteoliposomes

with phosphatidylcholine, which is a major component of the

ER membrane (van Meer et al, 2008). We combined protein

with 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC) lipid

in the presence of n-octyl glucoside, then generated lipo-

somes by dialysing away the detergent. Liposomes were

separated from soluble protein by flotation through a sucrose

step gradient. The MBP–NTD fusion protein floated to the top

of a sucrose gradient with the lipids, while the MBP protein

remained at the bottom (Figure 3F). This experiment shows

that the NTD associates directly with membranes in the

absence of other proteins or modifications, and thus has

the ability to mediate stable and direct association with the

ER membrane.
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Figure 2 Residues 26–43 of torsinA’s NTD are necessary and sufficient for ER retention. (A) Schematic view of torsinA sequence: signal
peptide (1–20, black), NTD (21–43, grey), linker region (44–70), AAA domain (71–332), DE mutation (*, 302/303), and C-terminal mGFP tag.
(B) Confocal microscopy of torsinA–mGFP, D26–43-torsinA–mGFP, E171Q/D26–43-torsinA–mGFP, and E171Q/D26–43-torsinA–mGFP in the
presence of BFA. (C) Immunoblot of the indicated GFP fusion proteins in cell lysates or media immunoprecipitates. (D) Confocal microscopy of
torsinA’s signal sequence (1–25), NTD (1–43), or NTD plus linker region (1–67) fused to mGFP. Scale bars, 10mm. (E) Immunoblot of the
indicated GFP fusion proteins in cell lysates or media immunoprecipitates. (F,G) Confocal microscopy of cells expressing D26–43-torsinA–
mGFP or E171Q/D26–43-torsinA–mGFP at 371C. (F0,G0) Costaining with Sec31A after 2 h incubation at 101C. Scale bars, 10mm.
(H) Quantification of colocalization of the indicated GFP-tagged proteins with Sec31A. N420 cells for each condition. Bars indicate standard
error of the mean.
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The NTD is a monotopic membrane interacting domain

Proteins known to be statically retained in the ER appear to

rely on preferential partitioning of short and/or polar TMDs

into the thinner and less ordered ER bilayer (Rayner and

Pelham, 1997; Yang et al, 1997; Ronchi et al, 2008). We have

established that torsinA’s NTD is necessary and sufficient for

ER retention and associates directly with membranes. We do

not, however, know how the NTD is positioned in the

membrane. While originally thought to be a transmembrane

protein (Breakefield et al, 2001; Liu et al, 2003), torsinA has

more recently been termed a peripheral membrane protein

based on partial extraction from membranes by alkaline wash

and modification of a glycosylation site inserted into the NTD

(Callan et al, 2007). However, bona fide TMD proteins can be

sensitive to alkaline extraction (Karsten et al, 2004) and

inserting an Asn residue could itself perturb handling of a

TMD by the translocon (Hessa et al, 2007). Indeed, based on

a biologically based TMD prediction algorithm (Snider et al,

2009), torsinA’s NTD contains a 23-residue sequence (Ile24–

Phe46) that might traverse the bilayer (see Figure 5A below).

Because both torsinA’s ER retention (Figure 2) and LULL1-

dependent NE targeting (Vander Heyden et al, 2009) rely on

the NTD, we set out to definitively assess its membrane

topology.

The bulk of torsinA’s sequence is in the lumen of the ER, as

demonstrated by its protection from protease digestion

(Kustedjo et al, 2000; Hewett et al, 2003). Importantly,

if the NTD were to function as a stop-transfer sequence, the

protein’s C terminus would be in the cytosol, the reverse of

what is seen in cells. However, the unusually close apposition

of torsinA’s signal peptide and NTD could influence topogen-

esis in more complex ways (Goder and Spiess, 2001).

In addition, there are examples of post-translational insertion

of hydrophobic domains across the membrane, particularly

when that domain falls at a protein terminus (Renthal, 2010).

We, therefore, wanted to directly test whether torsinA’s N

terminus is exposed to the cytosol. To do this, we asked

whether a polyhistidine tag inserted between the signal

peptide and the NTD (Figure 4A) is accessible from the

cytosol. We verified that the epitope tag did not disrupt

lumenal targeting (Figure 4B) and confirmed that selective

permeabilization with digitonin allows detection of the cyto-

solic Sec31A epitope (Figure 4C) but not of the lumenal PDI

epitope (Figure 4D). We found that the His tag was accessible

to antibody when membranes were fully permeabilized with

Triton-X-100 (Figure 4E), but was inaccessible when only

the plasma membrane was permeabilized with digitonin

(Figure 4F). To test whether the NTD is read as a TMD

when not adjacent to torsinA’s signal peptide, we inserted

residues 21–43 of torsinA into a TMD reporter construct (Saaf

et al, 1998) and assessed whether the NTD integrates into the

membrane or translocates into the lumen by monitoring

glycosylation after in vitro translation (Supplementary

Figure S2). Comparing the behaviour of the NTD to test

segments that do (Lep 13A/6L) or do not (Lep 18A/1L) insert

into the ER membrane (Hessa et al, 2005, 2007) shows that
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the NTD is most similar to the latter segment (Supplementary

Figure S1). These results suggest that in any context,

torsinA’s NTD does not traverse the bilayer, but rather

associates with the lumenal side of the ER membrane.

Together with its direct membrane association demonstrated

above, these experiments define the NTD as a monotopic

membrane interacting domain.

Mutations to the NTD have distinct effects on topology

and ER retention

Given that the NTD is not behaving as a TMD, we wondered

what distinguishes it from a TMD and as a TMD, how it

would be sorted within the secretory pathway. Energetic

predictions suggest that small changes to the sequence will

decrease the energy barrier to membrane insertion

(Figure 5A); we increased hydrophobicity either by inserting

the sequence LALALA between Ala 31 and Gly 32, or by

replacing polar residues in the NTD itself with Leu. Both

inserting the LALALA sequence and replacing two or more

polar residues with Leu caused the domain to be read as a

stop-transfer sequence, monitored by cytosolic exposure of

the C-terminal GFP tag to antibody (Figure 5B–F). This shows

that the NTD is close to the edge of recognition as a type I

TMD. Significantly, there were noticeable differences in the

steady-state subcellular distribution of these hydrophobic

mutant proteins. The LALALA and 5� Leu mutants clearly

accumulated in a perinuclear region suggestive of the Golgi in

many cells (Figure 5E and F). Upon closer inspection, (1–67)-

LALALA–GFP, (1–67)-5� Leu–GFP, and (1–67)-3� Leu–GFP

all partially colocalize with the intermediate compartment

marker ERGIC-53 (Supplementary Figure S2). In contrast,

the 2� Leu construct did not colocalize with ERGIC-53

(Supplementary Figure S2) despite its transmembrane orien-

tation (Figure 5C). Thus, the small increase in hydrophobicity

created by two leucine substitutions promotes integration as

a TMD optimized for retention in the ER, while further

hydrophobic substitution or extension of the sequence allows

the same TMD to escape to post-ER compartments. These

data indicate that both topology and sorting of torsinA is

affected by changes in NTD amino-acid composition. The

changes in sorting once the NTD becomes a TMD parallel

those previously reported when the hydrophobicity of other
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ER TMDs was increased (Rayner and Pelham, 1997; Yang

et al, 1997; Ronchi et al, 2008; Hsieh et al, 2010).

A map of the orientation of the NTD in the ER bilayer

We next performed scanning mutagenesis along the NTD to

explore its orientation with respect to the membrane. Ala or

Gly substitutions had no effect on targeting (Supplementary

Figure S4A) or topology (data not shown) of torsinA.

We therefore introduced Arg residues, which are typically

tolerated on the surface and in interfacial regions of the

bilayer but not in the hydrophobic core (Hessa et al, 2007).

We analysed the effects of these Arg substitutions on

E171Q–torsinA’s steady-state localization, secretion, and

diffusion in cellular membranes. Arg substitutions at posi-

tions 24, 28, 29, 31, and 38 had little to no effect on

localization (Figure 6B; Supplementary Figure S3C), ER re-

tention (Figure 6C; Supplementary Figure S3D), or diffusive

behaviour in cells (Figure 6F and data not shown). In con-

trast, Arg substitutions at positions 26, 30, and 34 caused

partial relocalization to an ERGIC-53-labelled compartment

(Figure 6A; Supplementary Figure S3B) and some secretion

into the cell medium (Figure 6C; Supplementary Figure S3D).

These mutations also caused an increase in diffusion as

measured by FRAP (Figure 6F and data not shown), although

not to the extent observed when the NTD is deleted

(Figure 6E). Altogether, these data indicate that selected
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mutations perturb torsinA’s association with the membrane

and retention in the ER. Importantly, the residues most

affected by single Arg substitutions would fall along one

face of a helix formed by the NTD (Figure 6D). This less

tolerant helical face where Leu 26, 30, and 34 lie is therefore

likely to be buried in the hydrophobic core of the lipid bilayer,

while the more tolerant helical surface where Ile 24, Leu 28,

Ala 29 and 31, and Ile 38 lie may be positioned in the

interfacial region or on the membrane surface (Hessa et al,

2007). While the NTD is not a strikingly amphipathic se-

quence, the asymmetry in distribution of its small nonpolar

residues versus leucine residues results in a low hydrophobic

moment (mH¼ 0.22) that may define the orientation of the

domain in the membrane. Hydrophobic residues along one

surface of this domain are necessary for retention of torsinA

in the ER.

Other lumenal membrane proteins are also excluded

from ERES

To identify proteins that might share torsinA’s topology and

sorting mechanism, we took advantage of the proteomic

analysis of secretory pathway components published a few

years ago by Bergeron and colleagues (Gilchrist et al, 2006)

(see Materials and methods). From a group of hydrophobic

ER-enriched proteins, we selected those for which the bulk of

the protein is known to be in the ER lumen and which were

either known to be monotopic lumenal membrane proteins or

had less well-characterized hydrophobic domains that could

be either monotopic membrane-associating domains or

TMDs (Table I). The mechanism(s) underlying the ER loca-

lization of these proteins are unknown, although data in each

case pointed to a role for their association with the membrane

in ER retention.

The best studied of these proteins is COX-1, a key enzyme

in prostaglandin synthesis (Picot et al, 1994) (Table I, group I).

Structures and simulations show that it uses segments of four

amphipathic helices to associate monotopically with the

lumenal bilayer leaflet (Picot et al, 1994; Balali-Mood et al,

2009). COX-1 was originally proposed to reside in the ER

because of a KDEL-like S/P-TEL sequence at its C terminus

(Song and Smith, 1996). However, mutation or deletion of

this sequence had no effect on ER localization (Regier et al,

1995; Ren et al, 1995; Guo and Kulmacz, 2000). Rather,

deletion studies suggest that the membrane-associating
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region of COX-1 is independently retained in the ER (Li et al,

1998), although a mechanistic explanation for this result has

been lacking. A similar situation applies to the unrelated ER

protein 11-b-hydroxysteroid dehydrogenase, which produces

cortisol and uses an amphipathic helix to associate mono-

topically with the lumenal bilayer leaflet (Hosfield et al, 2005;

Balali-Mood et al, 2009). To test whether one of these known

lumenal monotopic membrane proteins exhibits torsinA-like

ER retention, we analysed the effects of low temperature

blocks on the localization of transfected COX-1 (Figure 7).

Immunostained COX-1 is distributed throughout the ER at

physiological temperature. Like torsinA, COX-1 is absent from

the ERGIC after incubation at 151C and is efficiently excluded

from ERES after incubation at 101C (Figure 7). These

data indicate that COX-1 is statically retained in the ER by

exclusion from ERES.

We also identified a number of less well-characterized ER

membrane proteins that may share a similar retention me-

chanism, although detailed studies of their hydrophobic

membrane interacting domains are lacking (Table I, groups

II and III). Mutagenesis analyses on group II proteins point to

a role for their hydrophobic domains in ER localization. This

group includes arylacetamide deacetylase, whose N-terminal

hydrophobic domain is responsible for localization in the ER

and bears similarity to the monotopic hydrophobic domain of

11-b-hydroxysteroid dehydrogenase (Mziaut et al, 1999). The

UDP-glucuronosyltransferases (UDP-GTs) contain a lumenal

hydrophobic domain that is responsible for ER localization

independently of a C-terminal TMD and dilysine motif

(Meech and Mackenzie, 1998). Proteins in group III are

minimally studied, having confirmed ER localization and

proposed membrane-associating domains based on hydro-

phobicity. These include malectin, a recently identified lectin

involved in protein N-glycosylation in the ER, and the pepti-

dyl-prolyl cis–trans isomerase FKBP19; each has a proposed

N-terminal signal peptide and C-terminal hydrophobic

domain (Rulten et al, 2006; Schallus et al, 2008; Galli et al,

2011). Our finding that both torsinA and COX-1 are excluded

from ERES and thereby retained in the ER suggest a general

mechanism for ER retention that can be tested in future

studies of these other proteins.

Preferential partitioning of lumenal monotopic

membrane proteins into ER sheets

The fact that torsinA and COX-1 are monotopically associated

with the ER membrane via short helical domains predicts

preferential positioning of their membrane interacting do-

mains in the lumenal leaflet of the ER membrane. Partial

insertion of a protein into a bilayer is known to influence

and/or respond to membrane curvature (McMahon and

Gallop, 2005; Zimmerberg and Kozlov, 2006). The ER con-

sists of an anastamosing network of flat sheets and curved

tubules (Shibata et al, 2009). Reticulons are monotopic

membrane proteins that face the cytoplasm and distribute

preferentially into ER tubules (Voeltz et al, 2006; Shibata

et al, 2010). Because of the opposing curvature on the inside

of ER tubules, one might expect monotopic proteins that face

the lumen to avoid tubules and distribute preferentially into

the flatter sheets. To test this prediction, we analysed the

distribution of torsinA–mGFP as well as the known sheet-

preferring protein CLIMP63 in COS-7 cells (Figure 8) (Shibata

et al, 2010). The localization of both proteins was compared

with that of calreticulin, which is a soluble lumenal protein

present throughout the ER. We found that both torsinA and

CLIMP63 colocalized with calreticulin in the perinuclear ER

with its predominant population of sheets but were largely

absent from the tubules of the peripheral ER (Figure 8A and B;

Supplementary Figure S4). At high levels of expression,

torsinA could in some cases be observed in tubules while

in other cases, highly expressed torsinA promoted formation

of additional sheet structures, similar to what has been

described for CLIMP63 (Shibata et al, 2010). Importantly,

sheet preference of torsinA was abolished when its NTD

was deleted (Figure 8C; Supplementary Figure S4); the

Table I Identification of proteins with similar characteristics to torsinA from Gilchrist et al (2006)

GI accession Protein name Topology References PDB ID

Group I
603052 Cyclooxygenase 1 (COX-1)

(prostaglandin G/H
synthase 1)

Monotopic lumenal Picot et al (1994); Li et al (1998); Guo
and Kulmacz (2000); Balali-Mood
et al (2009)

1PRH

78214365 11-b-Hydroxysteroid
dehydrogenase

Monotopic lumenal Odermatt et al (1999); Hosfield
et al (2005)

1XU7

Group II
8347733 Arylacetamide deacetylase Lumenal, N-terminal HD Mziaut et al (1999); Frick et al (2004)
695162
89276780
27545358

UDP-GT 1A1
UDP-GT 1A6
UDP-GT 2B1

Lumenal, internal HD,
C-terminal TMD

Meech and Mackenzie (1998)
Ouizzine et al (1999)
Radominska-Pandya et al (2005)

Group III
34872654 Malectin Lumenal, C-terminal HD Schallus et al (2008); Galli et al (2011)
27664728 Peptidyl-prolyl cis–trans

isomerase FKBP19
Lumenal, C-terminal HD Rulten et al (2006)

Abbreviations: HD, hydrophobic domain; FKBP19, FK506-binding protein of 19 kDa; TMD, transmembrane domain; UDP-GT, UDP-glucur-
onosyltransferase.
Hydrophobic ER-enriched proteins with experimentally confirmed ER localization and lumenal orientation are listed.
Group I: structurally characterized as monotopic lumenal membrane proteins with defined membrane domains. Group II: deletion mutagenesis
analyses indicate hydrophobic domains that are necessary and/or sufficient for ER localization. Group III: confirmed ER localization and
proposed membrane associating domains based on hydrophobicity.
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D26–43-torsinA–mGFP signal was superimposable with that

of calreticulin. We also examined cells expressing COX-1 and

saw robust colocalization of it with endogenous CLIMP63 in

ER sheets (Figure 8D). In many cases, COX-1 overexpression

also appeared to cause sheet proliferation. Overall, this

analysis indicates that the monotopic lumenal proteins

torsinA and COX-1 segregate into ER sheets, and at least in

the case of torsinA, that this segregation correlates with the

presence of its ER retention determinants. Notably, in a

previous study of TMD-based ER retention, a plasma mem-

brane-targeted TMD partitioned into ER tubules before it

exited the ER, while a shorter ER-retained TMD preferred

ER sheets (Ronchi et al, 2008). Thus, it appears that pre-

ference for less curved membranes correlates with decreased

likelihood of entering ERES.

Discussion

Protein flux into and out of the ER is governed by the cell’s

need to create, fold, and secrete proteins. Direct or indirect

interaction of secreted proteins with the COPII coat results in

concentration into transport vesicles and efficient secretion;

alternatively, proteins may passively enter COPII vesicles and

exit the ER by bulk flow. Retention and retrieval mechanisms

counter the forward flux of the secretory pathway to keep

resident proteins in the ER. Although many sorting signals

have been defined, how the unique protein and lipid compo-

sition of the ER is established and maintained remains a topic

of study and debate (Thor et al, 2009). Here, we identify a

monotopic membrane interacting domain in the lumenal

enzyme torsinA that allows it to escape bulk flow out of the

ER, and is both necessary and sufficient for static retention in

the ER. Importantly, this sorting behaviour is attributable to

the domain’s direct association with the membrane, and

results in exclusion of the protein from ERES. We find

evidence for similar behaviour in other lumenal monotopic

proteins.

TorsinA has over the years been called either a transmem-

brane (Breakefield et al, 2001; Liu et al, 2003) or a peripheral

membrane-associated protein (Callan et al, 2007). Our data

show that its NTD is hydrophobic (Figure 3B and C) and

interacts directly with membranes in the absence of any other

proteins (Figure 3F) but in a monotopic and not transmem-

brane configuration (Figure 4). Several observations indicate

that the NTD controls ER retention independently of other

proteins. First, retention of torsinA or the NTD alone in the

ER is not readily saturated by overexpression. Second,

torsinA achieves ER localization by static retention rather

than by retrieval from post-ER compartments (Figure 1). As

has been previously noted (Ronchi et al, 2008), a receptor-

mediated mechanism for excluding a protein from ERES is

currently considered unlikely and would both require enough

statically retained receptor protein to interact with torsinA

over its entire lifetime and move the problem of defining a

retention mechanism from torsinA to the receptor. In addi-

tion, although the NTD controls ER retention, it is not

involved in interaction with the predominant torsinA binding

partners LAP1 and LULL1 (Naismith et al, 2009; Vander

Heyden et al, 2009) (data not shown), ruling these out as

potential retention factors. Finally, conservative substitutions

along the length of the NTD (Supplementary Figure S3A and B)

have no effect on ER retention, which would be unexpected if

the NTD were to harbour a protein–protein interacting motif.

We, therefore, conclude that ER retention is mediated by

physical features of the NTD.

While proteins that associate with the lumenal leaflet of

the ER membrane have not been extensively studied, we

identified a few that share torsinA’s topology and its exclu-

sion from ERES (Table I; Figure 7). Two of these—COX-1 and

11-b-hydroxysteroid dehydrogenase—have been structurally

characterized as lumenal monotopic proteins. Molecular

modelling of one of these proteins, COX-1, in membranes

showed that its monotopic membrane association disorders

the lumenal leaflet (Nina et al, 2000) and affects membrane

curvature (Wan and Coveney, 2009). Both of these effects

could influence partitioning of the domain within the lipid

bilayer (as schematized in Figure 9) and ultimately protein

sorting. Although a structure of torsinA’s NTD in a membrane
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will be important to define its relationship to the ER mem-

brane, our finding that it tolerates nonconservative mutations

on only one face of the helix involved in membrane associa-

tion suggests that it adopts a defined position in the mem-

brane, perhaps as an in-plane helix.

Membrane-based sorting of proteins along the secretory

pathway is a well-characterized phenomenon for transmem-

brane proteins, generally explained by a matching of TMD

length and composition to bilayer thickness, which in turn

depends on lipid composition (Bretscher and Munro, 1993;

Sharpe et al, 2010). The ER bilayer is generally thinner, less

ordered, and less charged than post-ER membranes (van

Meer et al, 2008). Based on our analysis of torsinA and

COX-1, we suggest that the characteristics of membranes

that result in sorting of TMDs (Sharpe et al, 2010) also

influence the sorting of monotopic membrane interacting

domains (Figure 9). We propose that there are two potentially

complementary effects arising from association of monotopic

domains with bilayers that could contribute to ER retention.

First, the energetic cost of inserting a monotopic domain into

the lumenal bilayer leaflet is likely to be lower in the loosely

packed membrane of the ER relative to the more ordered

membranes of the Golgi and later secretory pathway

(Figure 9, box i). Second, monotopic domains may preferen-

tially partition into less curved bilayers because the inner

leaflet of curved ER domains, such as tubules and budding

vesicles, will be relatively contracted (Figure 9, box ii).

Crowding of coat-associated cargo in the membrane may

amplify these effects in COPII vesicles in vivo.

As is typical for AAAþ family members (Hanson and

Whiteheart, 2005), torsinA is an oligomeric enzyme (Vander

Heyden et al, 2009) held together by interactions among its

AAAþ domains. It is possible that the NTD helices on such

an oligomer will function together to perturb lipid structure

and thereby amplify the effects of the NTD on protein distri-

bution among different subdomains of the ER. The rigidity
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of a flat AAAþ ring structure (Hanson and Whiteheart,

2005), which torsinA is expected to adopt, may further

restrict the oligomer to regions of low curvature. Notably,

the dimeric COX-1 enzyme contributes four helices per sub-

unit to anchor itself in the membrane (Picot et al, 1994). The

cooperative effects of membrane interacting domains on

oligomers may thus amplify the partitioning of monotopic

membrane interacting domains between subdomains of

the ER.

The exclusion of torsinA (this study) and other statically

retained ER membrane proteins (Ronchi et al, 2008) from the

ERES microenvironment and their preferential concentration

in ER sheets raises questions about the composition and

structure of ERES and the transitional ER. This membrane

domain lacks ribosomes and is enriched in COPII compo-

nents and cargo, consistent with its role in secretory pathway

trafficking (Bannykh et al, 1996; Hammond and Glick, 2000).

Phosphatidylinositol 4-phosphate is found on the cytosolic

surface of ERES (Blumental-Perry et al, 2006) and long-chain

phosphatidylserine is concentrated in COPII vesicles relative

to the bulk ER (Sturbois-Balcerzak et al, 1999), suggesting

that the transitional ER may also be a distinct lipid environ-

ment. Notably, the transitional ER is a stable ER subdomain

that is marked throughout the cell cycle by Sec16 (Hughes

and Stephens, 2010). Further studies will be needed to

delineate the relationships between ER subdomains with

differing composition, membrane curvature, and membrane

protein sorting.

Materials and methods

Plasmids
TorsinA–mGFP and D26–43-torsinA–mGFP are as described pre-
viously (Vander Heyden et al, 2009). (1–67), (1–43), and (1–25)
torsinA–mGFP were made by PCR amplification of the indicated
sequences with primers containing XhoI and EcoRI sites, followed
by ligation into the mGFP-containing pEGFP-N1 vector. All NTD
substitution and insertion mutations were introduced by Quik-
Change mutagenesis. MBP-(21–43) and MBP-(21–67) were made by
PCR amplification of the corresponding sequence with primers
containing EcoRI and BamHI restriction sites, followed by ligation
into pMAL-c (NEB). The Lep reporter vector, Lep 13A/6L, and 18A/
1L constructs were generously provided by Gunnar von Heijne
(Stockholm University). The NTD was inserted into the Lep reporter
vector as described (Hessa et al, 2005): oligonucleotides encoding
residues 21–43 of human torsinA in forward (Nlum–Ccyto orienta-
tion) or reverse (Ncyto–Clum orientation) sequence were annealed
together and ligated into Lep vector that had been digested with
SpeI and KpnI. The COX-1 expression vector was provided by
Robert J Kulmacz (University of Texas, Houston). VSVG-(ts045)–
GFP (Presley et al, 1997) and NPY–GFP (Perrais et al, 2004) were as
described.

Reagents
A peptide consisting of residues 21–43 of human torsinA, an
aminohexanoic acid linker and a biotin tag was synthesized and
verified by mass spectrometry by the WM Keck Foundation
Biotechnology Resource Laboratory (Yale University). 7-Methyl
diguanosine triphosphate cap structure analogue and amylose resin
were from NEB (Ipswich, MA). Rabbit reticulocyte lysate, canine
rough microsomes (RMs), and NTPs were from Promega (Madison,
WI). Complete protease inhibitor cocktail was from Boehringer
(Ridgefield, CT). Protein-G-Sepharose was from GE/Amersham
(Piscataway, NJ). Antibodies used include mouse monoclonal anti-
bCOP (clone maD, Sigma), mouse monoclonal anti-Sec31A (BD
Biosciences, San Jose, CA), mouse monoclonal anti-GFP (clone B-2,
Santa Cruz Biotechnology, Santa Cruz, CA), rabbit anti-GFP (Dalal
et al, 2004), rabbit polyclonal anti-His (Cell Signaling, Beverley,
MA), mouse monoclonal ERGIC-53 (Alexis Biochemicals,
San Diego, CA), and rabbit polyclonal anti-COX-1 (Cayman
Chemical, Ann Arbor, MI). All other chemicals were from Sigma
(St Louis, MO).

Cell culture
U2OS cells were grown in DMEM supplemented with 10% fetal
bovine serum (FBS) and L-glutamine. Transient transfections were
performed with Lipofectamine 2000 (Invitrogen, Carlsbad, CA)
according to the manufacturer’s instructions.

Immunofluorescence
For temperature block experiments, coverslips were transferred
to HEPES-buffered media supplemented with 10% FBS and
L-glutamine, and incubated for 2 h in a water bath set to 10 or
151C. For BFA treatment, cells were transfected B16 h before
adding 1 mM BFA to the medium for 4 h. Cells were washed in PBS
and then fixed with 4% paraformaldehyde in PBS for 10 min,
followed by permeabilization in 0.2% Triton-X-100 for 10 min.
Coverslips were blocked in 2% goat serum in PBS for 1 h before
incubation with primary and Alexa Fluor-conjugated secondary
antibodies. For selective permeabilization with digitonin, cells were
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Figure 9 Model of retention of monotopic lumenal proteins within
the ER. Monotopic lumenal proteins associate with the lumenal
leaflet of the ER. This membrane association favours partitioning
away from sites of ER-to-Golgi transport. This effect on protein
sorting may be achieved by monotopic domains selectively
partitioning into less ordered bilayers (box i) or less curved bilayers
(box ii).
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washed once in PBS before transfer to 0.0025% digitonin in PBS for
5 min at 41C. Cells were then fixed, blocked, and stained as
described above. Coverslips were mounted in Mowiol (Calbiochem,
San Diego, CA). Epifluorescence imaging was performed with a
Diaplan microscope (Leica Microsystems, Bannockburn, IL) using a
� 63 1.4 NA objective and a Zeiss MRm camera (Thornwood, NY).
Confocal imaging was performed on an Olympus FV500 microscope
using a � 60 1.4 NA objective. Brightness and contrast were
adjusted with Adobe Photoshop (Adobe Systems, San Jose, CA) and
composite figures were prepared in Adobe Illustrator.

Quantifying colocalization
To monitor localization of candidate cargo proteins to ERES, cells
expressing the indicated candidate proteins were costained for
Sec31A and viewed by confocal microscopy. Colocalization analysis
was restricted to ERES as described (French et al, 2008). Briefly, a
binary mask of the Sec31A signal was created, manually thre-
sholded, and added as an additional channel in the RGB image.
Colocalization was then quantified in the regions defined by the
mask, and expressed as Pearson’s correlation coefficient. Coloca-
lization was analysed in 420 cells for each condition reported.
Statistical comparison of data sets was performed by t-test.

Immunoprecipitation from culture medium
In all, 60 mm plates of U2OS cells were transiently transfected with
the indicated plasmids and incubated for B16 h. For experiments
involving BFA treatment, fresh media was added with or without
1 mM BFA and cells were incubated for an additional 6 h. The media
was then collected, placed on ice, and supplemented with 1 mM
PMSF, 1� complete protease inhibitors, and 5 mM EDTA. The
media was centrifuged at 4000 r.p.m. for 10 min at 41C to remove
cell debris. Protein-G-sepharose beads covalently conjugated to
affinity-purified rabbit anti-GFP antibody were then added to the
supernatant and incubated 2 h at 41C. The beads were then pelleted
and washed 3� in PBS/0.5% Triton-X-100 with PMSF and protease
inhibitors, then boiled in 50ml SDS–PAGE sample buffer for
analysis. The cells, meanwhile, were scraped and pelleted in PBS
and solubilized in B300 ml PBS/0.5% Triton-X-100 with PMSF and
protease inhibitors for 30 min at 41C. The insoluble material was
pelleted at 15 000 g for 10 min at 41C. An aliquot of the supernatant
was boiled in SDS–PAGE sample buffer. A total of 15 ml each of the
cell lysate and immunoprecipitate were separated on SDS–PAGE
and analysed by immunoblotting.

Far UV circular dichroism
Far UV CD spectra were recorded using a 0.2-mm pathlength
cuvette in a Jasco J715 spectropolarimeter at ambient temperature,
scanning from 260 to 190 nm in 0.2 nm steps at 100 nm/min,
averaging five spectra per condition. Peptide was diluted to 1 mg/ml
in 10 mM sodium phosphate buffer, pH 7.0 supplemented with TFE
(Sigma) or SDS as indicated. Solvent spectra gave negligible signal
and were subtracted from sample spectra. Data shown are
expressed as mean residue ellipticity (deg cm2/dmol). The percen-
tage of a-helix was estimated from the molar ellipticity at 222 nm
(y222) using the equation fh¼ (y222/y222a)þ (ik/N), where fh is the
fraction in the a-helical form, y222 is the mean residue ellipticity at
222 nm, y222a is the molar ellipticity at 222 nm for an infinitely long
a-helix (�39 500 deg cm2/dmol), i is the number of helices
(assumed to be one), k is a wavelength-specific constant (2.6 at
222 nm), and N is the number of peptide bonds in the peptide
(defined as 26 for the 23 residues of torsinA plus aminohexanoic
acid linker and biotin) (Bernstein et al, 2000).

Purification of MBP fusion proteins
BL21(DE3) E. coli transformed with MBP, MBP-21–43, or MBP-21–
67 were grown in 0.5 l of Terrific Broth and induced to express
protein by addition of isopropyl 1-thio-b-D-galactopyranoside and
shaking for 3 h at room temperature. After pelleting, bacteria were
lysed in 20 mM Tris pH 7.4, 200 mM NaCl, 1 mM EDTA, 5% glycerol,
1 mM PMSF by sonication. n-Octyl glucoside was added to 1% w/v
and samples were incubated for 30 min at 41C, followed by
centrifugation at 9000 g for 20 min at 41C. Amylose resin was
added to the supernatant and incubated overnight at 41C. Unbound
material was removed by washing in lysis buffer, and proteins were
eluted in lysis buffer supplemented with 10 mM maltose. MBP-21–
67 was incubated sequentially with 10 mM DTT (30 min at room
temperature) and 50 mM NEM (30 min at room temperature) to

reduce and alkylate cysteines. For use in proteoliposome prepara-
tions, proteins were dialysed into 10 mM sodium phosphate pH 7.0,
150 mM NaCl, 30 mM n-octyl glucoside overnight at 41C. Proteins
were clarified by centrifugation at 200 000 g for 1 h at 41C before use
in proteoliposome preparations. Protein concentrations were
quantitated by Bradford assay with BSA as standard and snap
frozen.

Proteoliposome preparation and characterization
DOPC was purchased from Avanti Polar Lipids (Alabaster, AL).
In all, 60mg of DOPC in chloroform was dried under a stream of
nitrogen and then under vacuum for several hours. The lipid film
was resuspended in 1 ml of 10 mM sodium phosphate, pH 7.0,
150 mM NaCl, and 30 mM n-octyl glucoside, followed by addition of
MBP fusion proteins for a final protein:lipid ratio of 2:1 by weight.
Liposomes were generated by removing detergent by dialysis at
371C in 2000 Da molecular weight cutoff dialysis cassettes (Pierce)
against 3� 1 l changes of buffer lacking detergent for 48 h. To
determine how much protein was associated with liposomes,
samples were loaded on the bottom of a sucrose cushion and
centrifuged to separate liposomes from unincorporated protein by
flotation. A 150-ml aliquot of the proteoliposome preparation was
mixed with 100 ml 2.2 M sucrose/10 mM sodium phosphate pH 7.0/
150 mM NaCl in a polycarbonate centrifuge tube. This mixture was
overlaid with a 200-ml cushion of 0.75 M sucrose/10 mM sodium
phosphate pH 7.0/150 mM NaCl, then with a 50-ml layer of buffer
lacking sucrose. The step gradients were centrifuged for 80 min at
240 000 g (55 000 r.p.m.) in a Beckman TLS 55 rotor. Three fractions
were collected from the bottom using a syringe (250, 150, and
100ml). Aliquots of each fraction were analysed by SDS–PAGE and
Coomassie stain.

Sorting proteomics data
Gilchrist et al (2006) identified 1430 proteins of the secretory
pathway proteome by mass spectrometry analysis of rat liver RM,
smooth microsome, Golgi, and COPI vesicle fractions. To identify
ER resident proteins similar to torsinA, these 1430 proteins were
sorted using the following criteria: (1) presence of a predicted
cleavable signal peptide (Supplementary Table S1C); (2) similar
biochemical behaviour to torsinA in salt extraction and Triton-X-114
partitioning experiments (Supplementary Table S3B); and (3)
enrichment in rough microsomal and smooth microsomal fractions
over Golgi and COPI fractions (Supplementary Table S3D).
Approximately 150 proteins including torsinA matched these
criteria. Literature and database searches were then used to
eliminate proteins known to be localized to different compartments
and identify proteins for which the cell biological data are
consistent with a lumenal orientation in the ER, and for which
other established ER retention or retrieval mechanisms either do not
exist or do not fully explain sorting behaviour. Selected proteins of
interest from this set are highlighted in Table I.

Transmembrane segment prediction
To explore the potential for hydrophobic sequences in torsinA to
adopt a TMD configuration, the full sequence of human torsinA was
analysed in the MPEx program (http://blanco.biomol.uci.edu/
mpex/) (Snider et al, 2009) in biological hydrophobicity scale
mode (‘translocon TM analysis’). The predicted DG for membrane
insertion (DGpred) was calculated for the MPEx-identified protein
sequence and mutants to that region using the dGpred prediction
algorithm (http://dgpred.cbr.su.se/) (Hessa et al, 2007); these
values are reported in Figure 5A.

Triton-X-114 phase separation and FRAP were performed as
described in Vander Heyden et al (2009). SDS–PAGE and
immunoblotting were performed as described (Dalal et al, 2004).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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